Thrombotic microangiopathy in cancer patients

Cover Page
Open Access Open Access
Restricted Access Subscription or Fee Access

Abstract


Thrombotic microangiopathy (TMA) is a rare phenomenon, which is severe pathology based on systemic microvascular thrombosis. TMA is characterized by thrombocytopenia and signs of microangiopathic hemolytic anemia. The review presents a modern data on the pathogenesis of tumor-associated thrombotic microangiopathy, considers the interaction of various effectors related to both tumor growth and metastasis process ― immune system activation, endotheliopathy formation, use of chemotherapeutic agents and targeted therapy in the pathogenesis of various forms of TMA. The interaction between the tumor tissue, hemostasis and immune systems are of the type of cascade of mutual activation, thus leading to the formation of a vicious circle, resulting in damage to endothelium and thrombosis in the microcirculatory channel, that is, the development of TMA. The formation of thromboembolism, which includes tumor tissue in the microvessels of the lungs, contributes to the development of pulmonary tumor thrombotic microangiopathy (PTTM). Сancer patients have higher vWF levels and lower ADAMTS13 levels or/and activity than the general population, often also depending on the stage of cancer: vWF and ADAMTS13 have been shown to be associated with thrombotic complications in cancer patients, and ADAMTS13 shows prognostic potential. Increased expression of complement proteins and/or activation of complement during chemotherapy, infectious and inflammatory complications may also cause TMA development. Pathogenesis of thrombotic microangiopathy also is associated with numerous chemotherapeutic agents, such as mitomycin C, gemcitabine, cisplatin, carboplatin and Bevacizumab, an inhibitor of VEGF. This may be the result of both the direct toxic effect of the drug on endothelium and damage of it by immune complexes caused by expression of the VEGF-antibodies. Usage of number of chemotherapeutic agents, especially anti-VEGF and tyrosine kinase inhibitors, which have a direct toxic effect on endothelium, are associated with the development of TMA. Mechanisms causing the development of TMA are considered as components of the hemostasis system, leading to the development of chronic, long-lasting disorders of the hemostasis system (chronic DIC syndrome) and are associated with high incidence of thrombotic complications.


Alexander D. Makatsariya

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: gemostasis@mail.ru
ORCID iD: 0000-0001-7415-4633
SPIN-code: 7538-2966
https://internist.ru/lectors/detail/makatsariya-/

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

MD, PhD, Professor

Ismail Elalamy

I.M. Sechenov First Moscow State Medical University (Sechenov University); Sorbonna University

Email: ismail.elalamy@aphp.fr
ORCID iD: 0000-0002-9576-1368

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992; 15-21 Rue de l'École de Médecine, 75006 Paris

Professor of the Department of  Obstetrics and Gynecology, The First I.M. Sechenov Moscow State Medical University; MD, PhD, Professor of Hospitaux Universitares Tenon, Medical University Sorbonne

 

Alexander V. Vorobev

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: alvorobev@gmail.com
ORCID iD: 0000-0002-4509-9281
SPIN-code: 5806-7062

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

MD, PhD

Angelina S. Bakhtina

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: angelinabakhtina@yandex.ru
ORCID iD: 0000-0002-6985-5635

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

Student of pediatric faculty

Muyang Meng

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: mmy88888@163.com
ORCID iD: 0000-0002-8326-556X

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

doctoral student of the Department of Obstetrics and Gynecology

Victoria O. Bitsadze

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: vikabits@mail.ru
ORCID iD: 0000-0001-8404-1042
SPIN-code: 5930-0859

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

MD, PhD, Professor

Jamilya Kh. Khizroeva

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: totu1@yandex.ru
ORCID iD: 0000-0002-0725-9686
SPIN-code: 8225-4976

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

MD, PhD, Professor

  1. Scully M, Hunt BJ, Benjamin S, et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol. 2012;158(3):323−335. doi: 10.1111/j.1365-2141.2012.09167.x.
  2. Moschowitz E. An acute febrile pleiochromic anemia with hyaline thrombosis of terminal arterioles and capillaries: an undescribed disease. 1925. Mt Sinai J Med. 2003;70(5):352−355. doi: 10.1001/archinte.1925.00120130092009.
  3. Symmers WS. Thrombotic microangiopathic haemolytic anemia (thrombotic microangiopathy). Br Med J. 1952;2(4790):897−903. doi: 10.1136/bmj.2.4790.897.
  4. Gasser C, Gautier E, Steck A, et al. [Hemolytic-uremic syndrome: bilateral necrosis of the renal cortex in acute acquired hemolytic anemia. (In German).] Schweiz Med Wochenschr. 1955;85(38−39):905−909.
  5. Schulman I, Pierce M, Lukens A, Currimbhoy Z. Studies on thrombopoiesis. I. A factor in normal human plasma required for platelet production: chronic thrombocytopenia due to its deficiency. Blood. 1960;16(1):943–957. doi: 10.1182/blood.v16.1.943.943.
  6. Upshaw JD Jr. Congenital deficiency of a factor in normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. N Engl J Med. 1978;298(24):1350−1352. doi: 10.1056/NEJM197806152982407.
  7. Moake JL. Thrombotic microangiopathies. N Engl J Med. 2002;347(8):589–600. doi: 10.1056/NEJMra020528.
  8. George JN, Nestor CM. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371(7):654−666. doi: 10.1056/NEJMra1312353.
  9. Акиньшина С.В., Бицадзе В.О., Гадаева З.К., Макацария А.Д. Значение тромботической микроангиопатии в патогенезе акушерских осложнений // Акушерство, гинекология и репродукция. ― 2015. ― Т.9. ― №2. ― С. 62−71. [Akinshina SV, Bitsadze VO, Gadaeva ZK, Makatsariya AD. Thrombotic microangiopathy in the pathogenesis of obstetric complications. Akusherstvo, ginekologiia i reproduktsiia. 2015;9(2):62–71. (In Russ).] doi: 10.17749/2070-4968.2015.9.2.062-71.
  10. Doello K, Amezcua V, Delgado A. [Thrombotic thrombocytopenic purpura in a patient with metastatic lung cancer. Med Clin (Barc). 2019;153(7):e33−e34. (In English, Spanish).] doi: 10.1016/j.medcli.2019.01.020.
  11. Chang JC. TTP-like syndrome: novel concept and molecular pathogenesis of endotheliopathy-associated vascular microthrombotic disease. Thromb J. 2018;16:20. doi: 10.1186/s12959-018-0174-4.
  12. Макацария А.Д., Бицадзе В.О., Хизроева Д.Х., Акиньшина С.В. Тромботические микроангиопатии в акушерской практике. ― М.: ГЭОТАР-Медиа, 2017. ― 304 с. [Makatsariya AD, Bitsadze VO, Khizroyeva DKh, Akin’shina SV. Tromboticheskiye mikroangiopatii v akusherskoy praktike. Moscow: GEOTAR-Media; 2017. 304 p. (In Russ).]
  13. Rodríguez-Pintó I, Espinosa G, Cervera R. Catastrophic APS in the context of other thrombotic microangiopathies. Curr Rheumatol Rep. 2015;17(1):482. doi: 10.1007/s11926-014-0482-z.
  14. Makatsariya A, Bitsadze V, Khizroeva D. The acquired form of ADAMTS-13 deficiency as the cause of thrombotic microangiopathy in a pregnant woman with recurrent cerebral circulation disorders, venous thromboembolism, preeclampsia and fetal loss syndrome. Case Rep Perinatal Med. 2017;6(2). doi: 10.1515/crpm-2017-0023.
  15. Torok TJ, Holman RC, Chorba TL. Increasing mortality from thrombotic thrombocytopenic purpura in the United States: analysis of national mortality data, 1968–1991. Am J Hematol. 1995;50(2):84−90. doi: 10.1002/ajh.2830500203.
  16. Antman KH, Skarin AT, Mayer RJ, et al. Microangiopathic hemolytic anemia and cancer: a review. Medicine (Baltimore). 1979;58(5):377−384. doi: 10.1097/00005792-197909000-00004.
  17. Hotta M, Ishida M, Kojima F, et al. Pulmonary tumor thrombotic microangiopathy caused by lung adenocarcinoma: case report with review of the literature. Oncol Lett. 2011;2(3):435−437. doi: 10.3892/ol.2011.270.
  18. Zwicker JI, Liebman HA, Neuberg D, et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res. 2009;15(22):6830−6840. doi: 10.1158/1078-0432.CCR-09-0371.
  19. Lohrmann HP, Adam W, Heymer B, Kubanek B. Microangiopathic hemolytic anemia in metastatic carcinoma. Report of eight cases. Ann Intern Med. 1973;79(3):368−375. doi: 10.7326/0003-4819-79-3-368.
  20. Lechner K, Obermeier HL. Cancer-related microangiopathic hemolytic anemia. Clinical and laboratory features in 168 reported cases. Medicine (Baltimore). 2012;91(4):195−205. doi: 10.1097/MD.0b013e3182603598.
  21. Mungall S, Mathieson P. Hemolytic uremic syndrome in metastatic adenocarcinoma of the prostate. Am J Kidney Dis. 2002;40(6):1334−1336. doi: 10.1053/ajkd.2002.36929.
  22. Воробьев А.В., Макацария А.Д., Бреннер Б. Синдром Труссо: забытое прошлое или актуальное настоящее? // Акушерство и гинекология. ― 2018. ― №2. ― С. 27−34. [Vorobyev AV, Makatsaria AD, Brenner B. Trousseau’s syndrome: The forgotten past or actual present? Akush Ginekol. 2018;(2):27–34. (In Russ).] doi: 10.18565/aig.2018.2.27-34.
  23. Langer F, Bokemeyer C. Crosstalk between cancer and haemostasis. Implications for cancer biologyand cancer-associated thrombosis with focus on tissue factor. Hamostaseologie. 2012;32(2):95−104. doi: 10.5482/ha-1160.
  24. Yeh ET, Chang HM. Cancer and clot: between a rock and a hard place. J Am Coll Cardiol. 2017;70(8):939−941. doi: 10.1016/j.jacc.2017.07.719.
  25. Palacios-Acedo AL, Mège D, Crescence L, et al. Platelets, thrombo-inflammation, and cancer: collaborating with the enemy. Front Immunol. 2019;10:1805. doi: 10.3389/fimmu.2019.01805.
  26. Sharma BK, Flick MJ, Palumbo JS. Cancer-associated thrombosis: a two-way street. Semin Thromb Hemost. 2019;45(6):559−568. doi: 10.1055/s-0039-1693472.
  27. Mege D, Aubert M, Lacroix R, et al. Involvement of platelets in cancers. Semin Thromb Hemost. 2019;45(6):569−575. doi: 10.1055/s-0039-1693475.
  28. Chew HK, Wun T, Harvey D, et al. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med. 2006;166(4):458−464. doi: 10.1001/archinte.166.4.458.
  29. Khorana AA, Francis CW, Menzies KE, et al. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. J Thromb Haemost. 2008;6(11):1983−1985. doi: 10.1111/j.1538-7836.2008.03156.x.
  30. Khorana AA, Ahrendt SA, Ryan CK, et al. Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res. 2007;13(10):2870−2875. doi: 10.1158/1078-0432.CCR-06-2351
  31. Шульман С., Макацария А.Д., Воробьев А.В., и др. Злокачественные новообразования и тромбозы. // Акушерство и гинекология. — 2019. — Т. 13. — №7. — С. 14-23 [Solopova SAG, Khizroeva KDK, Bitsadze BVO, et al. Malignant neoplasms and thromboses. Akusherstvo i ginekologiia. 2019;7_2019:14-23. (in Russ.)] doi: https://doi.org/10.18565/aig.2019.7.14-23
  32. Zacharski LR. Malignancy as a solid-phase coagulopathy: implications for the etiology, pathogenesis, and treatment of cancer. Semin Thromb Hemost. 2003;29(3):239−246. doi: 10.1055/s-2003-40962.
  33. Tran LK, Gross LM, Hagley P, Minkin R. Pulmonary hypertension in metastatic breast cancer: a case of pulmonary tumour thrombotic microangiopathy. BMJ Case Rep. 2019;12(9). pii: e229715. doi: 10.1136/bcr-2019-229715.
  34. Siriratnam P, Boolell V. Pulmonary tumour thrombotic microangiopathy: a rare but underappreciated complication of malignancy. Med J Aust. 2019;211(6):257−257. doi: 10.5694/mja2.50305.
  35. Price LC, Wells AU, Wort SJ. Pulmonary tumour thrombotic microangiopathy. Curr Opin Pulm Med. 2016;22(5):421−428. doi: 10.1097/MCP.0000000000000297.
  36. Raptis A, De Landsheere F, Verscheure S, et al. [Pulmonary tumour thrombotic microangiopathy associated with a gastric adenocarcinoma. (In French).] Rev Med Liege. 2019;74(7−8):431−435.
  37. Godbole RH, Saggar R, Kamangar N. Pulmonary tumor thrombotic microangiopathy: a systematic review. Pulm Circ. 2019;9(2):2045894019851000. doi: 10.1177/2045894019851000.
  38. Carter CA, Scicinski JJ, Lybeck HE, Oronsky BT. Pulmonary tumor thrombotic microangiopathy: a new paraneoplastic syndrome? Case Rep Oncol. 2016;9(1):246−248. doi: 10.1159/000446064.
  39. Sato N, Tasaki T, Noguchi H, et al. The pathological challenge of establishing a precise diagnosis for pulmonary tumour thrombotic microangiopathy: identification of new diagnostic criteria. Histopathology. 2019;74(6):892−901. doi: 10.1111/his.13813.
  40. Suffredini DA, Lee JM, Peer CJ, et al. Pulmonary tumor thrombotic microangiopathy and pulmonary veno-occlusive disease in a woman with cervical cancer treated with cediranib and durvalumab. BMC Pulm Med. 2018;18(1):112. doi: 10.1186/s12890-018-0681-x.
  41. Price LC, Wort SJ. Earlier diagnosis and international registries may improve outcomes in pulmonary tumour thrombotic microangiopathy. Eur Respir J. 2016;47(2):690−691. doi: 10.1183/13993003.01736-2015.
  42. Hutchinson JC, Fulcher JW, Hanna J, Ward ME. Pulmonary tumor thrombotic microangiopathy: case report and review of literature. Am J Forensic Med Pathol. 2018;39(1):56−60. doi: 10.1097/PAF.0000000000000369.
  43. Patrignani A, Purcaro A, Calcagnoli F, et al. Pulmonary tumor thrombotic microangiopathy: the challenge of the antemortem diagnosis. J Cardiovasc Med (Hagerstown). 2014;15(11):828−833. doi: 10.2459/JCM.0b013e328354e473.
  44. Werner TL, Agarwal N, Carney HM, et al. Management of cancer-associated thrombotic microangiopathy: what is the right approach? Am J Hematol. 2007;82:295–298. doi: 10.1002/ajh.20783.
  45. Catalan SR, Yang S, Wu H. The use of ADAMTS13, platelet count and serum creatinine to differentiate acquired TTP and other thrombotic microangiopathies. Br J Haematol. 2012;157(4):501−503. doi: 10.1111/j.1365-2141.2012.09032.x.
  46. Terrell DR, Williams LA, Vesely SK, et al. The incidence of thrombotic thrombocytopenic purpura-hemo- lytic uremic syndrome: all patients, idiopathic patients, and patients with severe ADAMTS-13 deficiency. J Thromb Haemost. 2005;3(7):1432−1436. doi: 10.1111/j.1538-7836.2005.01436.x.
  47. Karim F, Adil SN, Afaq B, Ul Haq A. Deficiency of ADAMTS‐13 in pediatric patients with severe sepsis and impact on in‐hospital mortality. BMC Pediatr. 2013;13:44. doi: 10.1186/1471-2431-13-44.
  48. Fukushima H, Nishio K, Asai H, et al. Ratio of von Willebrand factor propeptide to ADAMTS13 is associated with severity of sepsis. Shock. 2013;39(5):409−414. doi: 10.1097/SHK.0b013e3182908ea7.
  49. Peigne V, Azoulay E, CoquetI, et al.The prognostic value of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency in septic shock patients involves interleukin‐6 and is not dependent on disseminated intravascular coagulation. Crit Care. 2013;17(6):R273. doi: 10.1186/cc13115.
  50. Hyseni A, Kemperman H, de Lange DW, et al. Active von Willebrand factor predicts 28‐day mortality in patients with systemic inflammatory response syndrome. Blood. 2014;123(14):2153−2156. doi: 10.1182/blood-2013-08-508093.
  51. Habe K, Wada H, Ito‐Habe N, et al. Plasma ADAMTS13, von Willebrand factor (VWF) and VWF propeptide profiles in patients with DIC and related diseases. Thromb Res. 2012;129(5):598−602. doi: 10.1016/j.thromres.2011.10.011.
  52. Suryawanshi S, Huang X, Elishaev E, et al. Complement pathway is frequently altered in endometriosis and endometriosis-associated ovarian cancer. Clin Cancer Res. 2014;20(23):6163−6174. doi: 10.1158/1078-0432.CCR-14-1338.
  53. Seguin-Devaux C, Plesseria JM, Verschueren C, et al. FHR4-based immunoconjugates direct complement-dependent cytotoxicity and phagocytosis towards HER2-positive cancer cells. Mol Oncol. 2019. doi: 10.1002/1878-0261.12554.
  54. Khan MA, Assiri AM, Broering DC. Complement and macrophage crosstalk during process of angiogenesis in tumor progression. J Biomed Sci. 2015;22:58. doi: 10.1186/s12929-015-0151-1.
  55. Krisinger MJ, Goebeler V, Lu Z, et al. Thrombin generates previously unidentified C5 products that support the terminal complement activation pathway. Blood. 2012;120(8):1717−1725. doi: 10.1182/blood-2012-02-412080.
  56. Huber-Lang M, Sarma JV, Zetoune FS, et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med. 2006;12(6):682−687. doi: 10.1038/nm1419.
  57. Geller A, Yan J. The role of membrane bound complement regulatory proteins in tumor development and cancer immunotherapy. Front Immunol. 2019;10:1074. doi: 10.3389/fimmu.2019.01074.
  58. Roumenina LT, Daugan MV, Noé R, et al. Tumor cells hijack macrophage-produced complement c1q to promote tumor growth. Cancer Immunol Res. 2019;7(7):1091−1105. doi: 10.1158/2326-6066.CIR-18-0891.
  59. Fishelson Z, Kirschfink M. Complement C5b-9 and cancer: mechanisms of cell damage, cancer counteractions, and approaches for intervention. Front Immunol. 2019;10:752. doi: 10.3389/fimmu.2019.00752.
  60. Magalhães Filho M, Aguiar Junior PN, Adashek JJ, De Mello RA. How complement activation via a C3a receptor pathway alters CD4+ T lymphocytes and mediates lung cancer progression?-future perspectives. J Thorac Dis. 2019;11(Suppl 3):S210−S211. doi: 10.21037/jtd.2019.02.21.
  61. Okrój M, Potempa J. Complement activation as a helping hand for inflammophilic pathogens and cancer. Front Immunol. 2019;9:3125. doi: 10.3389/fimmu.2018.03125.
  62. Jokiranta TS. HUS and atypical HUS. Blood. 2017;129(21):2847−2856. doi: 10.1182/blood-2016-11-709865.
  63. Nanjappa S, Singh V, Uttamchandani S, Pabbathi S. Thrombotic microangiopathy in a patient treated with gemcitabine. Cancer Control. 2017;24(1):54−56. doi: 10.1177/107327481702400108.
  64. Zanchelli F, Tampieri E, Gozzetti F, et al. [Atypical hemolytic uremic syndrome related to Oxalyplatin cancer chemotherapy responsive to Eculizumab. (In Italian).] G Ital Nefrol. 2017;34(1). pii: gin/34.1.5.
  65. Kasper S, Neurath MF, Huber C, et al. Protein A immunoadsorption therapy for refractory, mitomycin C-associated thrombotic microangiopathy. Transfusion. 2007;47(7):1263−1267. doi: 10.1111/j.1537-2995.2007.01266.x.
  66. Grangé S, Coppo P; Centre de référence des microangiopathies thrombotiques (CNR-MAT). Thrombotic microangiopathies and antineoplastic agents. Nephrol Ther. 2017;13 Suppl 1:S109−S113. doi: 10.1016/j.nephro.2017.01.016.
  67. Izzedine H, Isnard-Bagnis C, Launay-Vacher V, et al. Gemcitabine induced thrombotic microangiopathy: a systematic review. Nephrol Dial Transplant. 2006;21(11):3038−3045. doi: 10.1093/ndt/gfl507.
  68. Zupancic M, Shah PC, Shah-Khan F. Gemcitabine-associated thrombotic thrombocytopenic purpura. Lancet Oncol. 2007;8(7):634−641.
  69. Thurnher D, Kletzmayr J, Formanek M, et al. Chemotherapy related hemolytic-uremic syndrome following treatment of a carcinoma of the nasopharynx. Oncology. 2001;61(2):143−146. doi: 10.1159/000055365.
  70. Walker RW, Rosenblum MK, Kempin SJ, Christian MC. Carboplatin-associated thrombotic microangiopathic hemolytic anemia. Cancer. 1989;64(5):1017−1020. doi: 10.1002/ 1097-0142(19890901)64:5<1017::aid-cncr2820640508>3.0.co;2-n.
  71. Nuver J, De Haas EC, Van Zweeden M, et al. Vascular damage in testicular cancer patients: a study on endothelial activation by bleomycin and cisplatin in vitro. Oncol Rep. 2010;23(1):247−253.
  72. Izzedine H, Escudier B, Lhomme C, et al. Kidney diseases associated with anti-vascular endothelial growth factor (VEGF): an 8-year observational study at a single center. Medicine (Baltimore). 2014;93(24):333−339. doi: 10.1097/MD.0000000000000207.
  73. Eremina V, Jefferson JA, Kowalewska J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129−1136. doi: 10.1056/NEJMoa0707330.
  74. Choi MK, Hong JY, Jang JH, Lim HY. TTP-HUS associated with sunitinib. Cancer Res Treat. 2008;40(4):211−213. doi: 10.4143/crt.2008.40.4.211.
  75. Martino S, Daguindau E, Ferrand C, et al. A successful renal transplantation for renal failure after dasatinib-induced thrombotic thrombocytopenic purpura in a patient with imatinibresistant chronic myelogenous leukaemia on nilotinib. Leuk Res Rep. 2013;2(1):29−31. doi: 10.1016/j.lrr.2013.02.003.
  76. Ojeda-Uribe M, Merieau S, Guillon M, et al. Secondary thrombotic microangiopathy in two patients with Philadelphia-positive hematological malignancies treated with imatinib mesylate. J Oncol Pharm Pract. 2016;22(2):361−370. doi: 10.1177/1078155214568580.
  77. Weitz IC. Thrombotic microangiopathy in cancer. Semin Thromb Hemost. 2019;45(4):348−353. doi: 10.1055/s-0039-1687893.
  78. Obermeier HL, Riedl J, Ay C, et al. The role of ADAMTS-13 and von Willebrand factor in cancer patients: results from the vienna cancer and thrombosis study. Res Pract Thromb Haemost. 2019;3(3):503−514. doi: 10.1002/rth2.12197.
  79. De Meis E, Brandão BC, Capella FC, et al. Catastrophic antiphospholipid syndrome in cancer patients: an Interaction of clotting, autoimmunity and tumor growth? Isr Med Assoc J. 2014;16(9):544−547.
  80. Charach R, Sheiner E, Beharier O, et al. Recurrent pregnancy loss and future risk of female malignancies. Arch Gynecol Obstet. 2018;298(4):781−787. doi: 10.1007/s00404-018-4868-4.
  81. Gris JC, Mousty È, Bouvier S, et al. Increased incidence of cancer in the follow-up of obstetric antiphospholipid syndrome within the the NOH-APS cohort. Haematologica. 2019. pii: haematol.2018.213991. doi: 10.3324/haematol.2018.213991.
  82. Yee Y, Angkodjojo S, Tan PH. Chronic thrombotic microangiopathy secondary to antiphospholipid syndrome, presenting with severe hypertension and chronic renal impairment. BMJ Case Rep. 2019;12(9). pii: e231434. doi: 10.1136/bcr-2019-231434.
  83. Kello N, Khoury LE, Marder G, et al. Secondary thrombotic microangiopathy in systemic lupus erythematosus and antiphospholipid syndrome, the role of complement and use of eculizumab: Case series and review of literature. Semin Arthritis Rheum. 2019;49(1):74−83. doi: 10.1016/j.semarthrit.2018.11.005.
  84. Remiker AS, Palumbo JS. Mechanisms coupling thrombin to metastasis and tumorigenesis. Thromb Res. 2018;164 Suppl 1:S29−S33. doi: 10.1016/j.thromres.2017.12.020.
  85. D’Andrea E, Lagerberg T, De Vito C, et al. Correction: Patient experience and utility of genetic information: a cross-sectional study among patients tested for cancer susceptibility and thrombophilia. Eur J Hum Genet. 2018;26(9):1398. doi: 10.1038/s41431-018-0186-3.
  86. Eischer L, Kammer M, Traby L, et al. Risk of cancer after anticoagulation in patients with unprovoked venous thromboembolism: an observational cohort study. J Thromb Haemost. 2017;15(7):1368−1374. doi: 10.1111/jth.13702.
  87. Ueda Y, Mohammed I, Song D, et al. Murine systemic thrombophilia and hemolytic uremic syndrome from a factor H point mutation. Blood. 2017;129(9):1184−1196. doi: 10.1182/blood-2016-07-728253.

Supplementary files

Supplementary Files Action
1. Fig. 1. Pathogenetic mechanisms of thrombotic thrombocytopenic purpura View (304KB) Indexing metadata
2. Fig. 2. Pathogenetic mechanisms of activation of the hemostatic system in conditions of tumor growth View (270KB) Indexing metadata

Views

Abstract - 23

PDF (Russian) - 1

Cited-By


PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies