Современные аспекты использования клеточных технологий в гинекологии

Open Access Open Access
Restricted Access Subscription or Fee Access

Abstract


В представленном обзоре приведены данные об опыте клинических и доклинических исследований использования современных клеточных технологий в гинекологии, в частности при лечении таких заболеваний как синдром Ашермана, первичная яичниковая недостаточность, бесплодие, несостоятельность рубца на матке, пролапс гениталий, аномалии развития женской половой сферы, а также некоторых вариантов патологии эндометрия. В работе дана характеристика используемых клеточных культур и их воздействие на процессы регенерации, представлены комбинации клеток с биосовместимыми материалами, их эффективность и возможные недостатки.

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ (Сеченовский Университет)

Email: yuliya.sheveleva.97@mail.ru
ORCID iD: 0000-0003-1753-0537

Russian Federation

студентка 4-го курса Международной школы «Медицина будущего» Первого МГМУ им. И.М. Сеченова (Сеченовского университета)

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ (Сеченовский Университет)

Email: yuliya.sheveleva.97@mail.ru
ORCID iD: 0000-0003-1753-0537

Russian Federation

студентка 4-го курса Международной школы «Медицина будущего» Первого МГМУ им. И.М. Сеченова (Сеченовского университета)

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ (Сеченовский Университет)

Author for correspondence.
Email: lyundup@gmail.com
ORCID iD: 0000-0002-0102-5491

Russian Federation

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ (Сеченовский Университет)

Email: emandra97@mail.ru
ORCID iD: 0000-0002-5397-9422

Russian Federation

студентка 4-го курса Международной школы «Медицина будущего» Первого МГМУ им. И.М. Сеченова (Сеченовского университета)

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ (Сеченовский Университет)

Email: emandra97@mail.ru
ORCID iD: 0000-0002-5397-9422

Russian Federation

студентка 4-го курса Международной школы «Медицина будущего» Первого МГМУ им. И.М. Сеченова (Сеченовского университета)

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ (Сеченовский Университет)

Email: ya.suli.na@gmail.com
ORCID iD: 0000-0001-7702-2687

кандидат медицинских наук, ассистент кафедры акушерства и гинекологии № 1 Первого МГМУ им. И. М. Сеченова (Сеченовского университета)

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ (Сеченовский Университет)

Email: ya.suli.na@gmail.com
ORCID iD: 0000-0001-7702-2687

кандидат медицинских наук, ассистент кафедры акушерства и гинекологии № 1 Первого МГМУ им. И. М. Сеченова (Сеченовского университета)

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ (Сеченовский Университет)

Email: leonid.aleks@bk.ru
ORCID iD: 0000-0003-2512-5785

Russian Federation

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ (Сеченовский Университет)

Email: leonid.aleks@bk.ru
ORCID iD: 0000-0003-2512-5785

Russian Federation

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ (Сеченовский Университет)

Email: liubella.2011@mail.ru
ORCID iD: 0000-0003-3338-1113
доктор медицинских наук, профессор, директор клиники акушерства и гинекологии им. И.Ф. Снегирёва Первого МГМУ им. И. М. Сеченова, заведующий кафедрой акушерства и гинекологии № 1 Первого МГМУ им. И. М. Сеченова

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ (Сеченовский Университет)

Email: liubella.2011@mail.ru
ORCID iD: 0000-0003-3338-1113
доктор медицинских наук, профессор, директор клиники акушерства и гинекологии им. И.Ф. Снегирёва Первого МГМУ им. И. М. Сеченова, заведующий кафедрой акушерства и гинекологии № 1 Первого МГМУ им. И. М. Сеченова

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ (Сеченовский Университет)

Email: ra2001_2001@mail.ru
ORCID iD: 0000-0002-4476-4972

кандидат медицинских наук, доцент кафедры онкологии, радиотерапии и пластической хирургии Первого МГМУ им. И. М. Сеченова (Сеченовского университета)

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ (Сеченовский Университет)

Email: ra2001_2001@mail.ru
ORCID iD: 0000-0002-4476-4972

кандидат медицинских наук, доцент кафедры онкологии, радиотерапии и пластической хирургии Первого МГМУ им. И. М. Сеченова (Сеченовского университета)

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ (Сеченовский Университет)

Email: beregovykh@ramn.ru
ORCID iD: 0000-0002-0210-4570

Russian Federation академик РАН, доктор технических наук, профессор кафедрой промышленной фармации ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ (Сеченовский Университет)

Email: beregovykh@ramn.ru
ORCID iD: 0000-0002-0210-4570

Russian Federation академик РАН, доктор технических наук, профессор кафедрой промышленной фармации ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России

  • Atala A. Advances in Tissue and Organ Replacement. Curr Stem Cell Res Ther. 2008;3(1):21-31. doi: 10.2174/157488808783489435.
  • Berthiaume F, Maguire T, Yarmush M. Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges. Annu Rev Chem Biomol Eng. 2011;2(1):403-430. doi: 10.1146/annurev-chembioeng-061010-114257.
  • Zhu B, Murthy S. Stem cell separation technologies. Curr Opin Chem Eng. 2013;2(1):3-7. doi: 10.1016/j.coche.2012.11.002.
  • Books® H. Tissue Engineering Made Easy. Half Price Books. https://www.hpb.com/products/tissue-engineering-made-easy-9780128053614. Published 2019. Accessed April 2, 2019.
  • Tagler D, Tu T, Smith R, et al. Embryonic Fibroblasts Enable the Culture of Primary Ovarian Follicles Within Alginate Hydrogels. Tissue Engineering Part A. 2012;18(11-12):1229-1238. doi: 10.1089/ten.tea.2011.0418.
  • Laronda M, Jakus A, Whelan K, et al. Initiation of puberty in mice following decellularized ovary transplant. Biomaterials. 2015;50:20-29. doi: 10.1016/j.biomaterials.2015.01.051.
  • Pangas S, Saudye H, Shea L, Woodruff T. Novel Approach for the Three-Dimensional Culture of Granulosa Cell–Oocyte Complexes. Tissue Eng. 2003;9(5):1013-1021. doi: 10.1089/107632703322495655.
  • Krotz S, Robins J, Ferruccio T, et al. In vitro maturation of oocytes via the pre-fabricated self-assembled artificial human ovary. J Assist Reprod Genet. 2010;27(12):743-750. doi: 10.1007/s10815-010-9468-6.
  • Huet C. Extracellular matrix regulates ovine granulosa cell survival, proliferation and steroidogenesis: relationships between cell shape and function. Journal of Endocrinology. 2001;169(2):347-360. doi: 10.1677/joe.0.1690347.
  • Kreeger P, Woodruff T, Shea L. Murine granulosa cell morphology and function are regulated by a synthetic Arg–Gly–Asp matrix. Mol Cell Endocrinol. 2003;205(1-2):1-10. doi: 10.1016/s0303-7207(03)00209-0.
  • Kreeger P, Deck J, Woodruff T, Shea L. The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials. 2006;27(5):714-723. doi: 10.1016/j.biomaterials.2005.06.016.
  • Ghadami M, El-Demerdash E, Zhang D, et al. Bone Marrow Transplantation Restores Follicular Maturation and Steroid Hormones Production in a Mouse Model for Primary Ovarian Failure. PLoS ONE. 2012;7(3):e32462. doi: 10.1371/journal.pone.0032462.
  • Mohamed S, Shalaby S, Abdelaziz M, et al. Human Mesenchymal Stem Cells Partially Reverse Infertility in Chemotherapy-Induced Ovarian Failure. Reproductive Sciences. 2017;25(1):51-63. doi: 10.1177/1933719117699705.
  • Santiquet N, Vallières L, Pothier F, et al. Transplanted Bone Marrow Cells Do Not Provide New Oocytes But Rescue Fertility in Female Mice Following Treatment With Chemotherapeutic Agents. Cell Reprogram. 2012;14(2):123-129. doi: 10.1089/cell.2011.0066.
  • Abd-Allah S, Shalaby S, Pasha H, et al. Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits. Cytotherapy. 2013;15(1):64-75. doi: 10.1016/j.jcyt.2012.08.001.
  • Herraiz S, Buigues A, Díaz-García C, et al. Fertility rescue and ovarian follicle growth promotion by bone marrow stem cell infusion. Fertil Steril. 2018;109(5):908-918.e2. doi: 10.1016/j.fertnstert.2018.01.004.
  • Lee H, Selesniemi K, Niikura Y, et al. Bone Marrow Transplantation Generates Immature Oocytes and Rescues Long-Term Fertility in a Preclinical Mouse Model of Chemotherapy-Induced Premature Ovarian Failure. Journal of Clinical Oncology. 2007;25(22):3198-3204. doi: 10.1200/jco.2006.10.3028.
  • Khanmohammadi N, Sameni H, Mohammadi M, et al. Effect of Transplantation of Bone Marrow Stromal Cell-Conditioned Medium on Ovarian Function, Morphology and Cell Death in Cyclophosphamide-Treated Rats. Cell Journal. 2018;20(1):10-18 doi: 10.22074/cellj.2018.4919.
  • Liu T, Huang Y, Zhang J, et al. Transplantation of Human Menstrual Blood Stem Cells to Treat Premature Ovarian Failure in Mouse Model. Stem Cells Dev. 2014;23(13):1548-1557. doi: 10.1089/scd.2013.0371.
  • Lai D, Wang F, Yao X, et al. Human endometrial mesenchymal stem cells restore ovarian function through improving the renewal of germline stem cells in a mouse model of premature ovarian failure. J Transl Med. 2015;13(1). doi: 10.1186/s12967-015-0516-y.
  • Zhu S, Hu H, Xu H, et al. Human umbilical cord mesenchymal stem cell transplantation restores damaged ovaries. J Cell Mol Med. 2015;19(9):2108-2117. doi: 10.1111/jcmm.12571.
  • Li J, Mao Q, He J, et al. Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism. Stem Cell Res Ther. 2017;8(1). doi: 10.1186/s13287-017-0514-5.
  • Zhang Q, Xu M, Yao X, et al. Human amniotic epithelial cells inhibit granulosa cell apoptosis induced by chemotherapy and restore the fertility. Stem Cell Res Ther. 2015;6(1). doi: 10.1186/s13287-015-0148-4.
  • Zhang Q, Bu S, Sun J, et al. Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage. Stem Cell Res Ther. 2017;8(1). doi: 10.1186/s13287-017-0721-0.
  • Yin N, Zhao W, Luo Q, et al. Restoring Ovarian Function With Human Placenta-Derived Mesenchymal Stem Cells in Autoimmune-Induced Premature Ovarian Failure Mice Mediated by Treg Cells and Associated Cytokines. Reproductive Sciences. 2017;25(7):1073-1082. doi: 10.1177/1933719117732156.
  • Liu T, Li Q, Wang S, et al. А. Mol Med Rep. 2016;13(6):5053-5058. doi: 10.3892/mmr.2016.5191.
  • Sun M, Wang S, Li Y, et al. Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem Cell Res Ther. 2013;4(4):80. doi: 10.1186/scrt231.
  • Pregnancy After Stem Cell Transplantation in Premature Ovarian Failure - Full Text View - ClinicalTrials.gov. Clinicaltrials.gov. https://www.clinicaltrials.gov/ct2/show/NCT02151890. Published 2019. Accessed April 3, 2019.
  • Volkova N, Yukhta M, Goltsev A. Mesenchymal Stem Cells in Restoration of Fertility at Experimental Pelvic Inflammatory Disease. Stem Cells Int. 2017;2017:1-9. doi: 10.1155/2017/2014132.
  • Manavella D, Cacciottola L, Desmet C, et al. Adipose tissue-derived stem cells in a fibrin implant enhance neovascularization in a peritoneal grafting site: a potential way to improve ovarian tissue transplantation. Human Reproduction. 2018;33(2):270-279. doi: 10.1093/humrep/dex374.
  • Smith R, Shikanov A, Kniazeva E, et al. Fibrin-Mediated Delivery of an Ovarian Follicle Pool in a Mouse Model of Infertility. Tissue Engineering Part A. 2014;20(21-22):3021-3030. doi: 10.1089/ten.tea.2013.0675.
  • Shikanov A, Smith R, Xu M, et al. Hydrogel network design using multifunctional macromers to coordinate tissue maturation in ovarian follicle culture. Biomaterials. 2011;32 (10): 2524–31. doi: 10.1016/j.biomaterials.2010.12.027.
  • Lin N, Li X, Song T, et al. The effect of collagen-binding vascular endothelial growth factor on the remodeling of scarred rat uterus following full-thickness injury. Biomaterials. 2012;33(6):1801-1807. doi: 10.1016/j.biomaterials.2011.11.038.
  • Li X, Sun H, Lin N, et al. Regeneration of uterine horns in rats by collagen scaffolds loaded with collagen-binding human basic fibroblast growth factor. Biomaterials. 2011;32(32):8172-8181. doi: 10.1016/j.biomaterials.2011.07.050.
  • Young R, Goloman G. Allo- and Xeno-Reassembly of Human and Rat Myometrium from Cells and Scaffolds. Tissue Engineering Part A. 2013;19(19-20):2112-2119. doi: 10.1089/ten.tea.2012.0549.
  • Lü S, Wang H, Liu H, et al. Reconstruction of Engineered Uterine Tissues Containing Smooth Muscle Layer in Collagen/Matrigel Scaffold In Vitro. Tissue Engineering Part A. 2009;15(7):1611-1618. doi: 10.1089/ten.tea.2008.0187.
  • Campo H, Baptista P, López-Pérez N, et al. De- and recellularization of the pig uterus: a bioengineering pilot study. Biol Reprod. 2016;96(1):34-45. doi: 10.1095/biolre/bio143396.
  • Song T, Zhao X, Sun H, et al. Regeneration of Uterine Horns in Rats Using Collagen Scaffolds Loaded with Human Embryonic Stem Cell-Derived Endometrium-Like Cells. Tissue Engineering Part A. 2015;21(1-2):353-361. doi: 10.1089/ten.tea.2014.0052.
  • Fan D, Wu S, Ye S, et al. Umbilical cord mesenchyme stem cell local intramuscular injection for treatment of uterine niche. Medicine (Baltimore). 2017;96(44):e8480. doi: 10.1097/md.0000000000008480.
  • Cervelló I, Gil-Sanchis C, Santamaría X, et al. Human CD133+ bone marrow-derived stem cells promote endometrial proliferation in a murine model of Asherman syndrome. Fertil Steril. 2015;104(6):1552-1560.e3. doi: 10.1016/j.fertnstert.2015.08.032.
  • Wang J, Ju B, Pan C, et al. Application of Bone Marrow-Derived Mesenchymal Stem Cells in the Treatment of Intrauterine Adhesions in Rats. Cellular Physiology and Biochemistry. 2016;39(4):1553-1560. doi: 10.1159/000447857.
  • Alawadhi F, Du H, Cakmak H, Taylor H. Bone Marrow-Derived Stem Cell (BMDSC) Transplantation Improves Fertility in a Murine Model of Asherman's Syndrome. PLoS ONE. 2014;9(5):e96662. doi: 10.1371/journal.pone.0096662.
  • Kilic S, Yuksel B, Pinarli F, et al. Effect of stem cell application on Asherman syndrome, an experimental rat model. J Assist Reprod Genet. 2014;31(8):975-982. doi: 10.1007/s10815-014-0268-2.
  • Santamaria X, Cabanillas S, Cervelló I, et al. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman's syndrome and endometrial atrophy: a pilot cohort study. Human Reproduction. 2016;31(5):1087-1096. doi: 10.1093/humrep/dew042.
  • Xu L, Ding L, Wang L, et al. Umbilical cord-derived mesenchymal stem cells on scaffolds facilitate collagen degradation via upregulation of MMP-9 in rat uterine scars. Stem Cell Res Ther. 2017;8(1). doi: 10.1186/s13287-017-0535-0.
  • Zhang L, Li Y, Guan C, et al. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase. Stem Cell Res Ther. 2018;9(1). doi: 10.1186/s13287-018-0777-5.
  • Gan L, Duan H, Xu Q, et al. Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions. Cytotherapy. 2017;19(5):603-616. doi: 10.1016/j.jcyt.2017.02.003.
  • Panchal S, Patel H, Nagori C. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman′s syndrome. J Hum Reprod Sci. 2011;4(1):43. doi: 10.4103/0974-1208.82360.
  • Yang H, Wu S, Feng R, et al. Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats. Stem Cell Res Ther. 2017;8(1). doi: 10.1186/s13287-017-0718-8.
  • Ding L, Li X, Sun H, et al. Transplantation of bone marrow mesenchymal stem cells on collagen scaffolds for the functional regeneration of injured rat uterus. Biomaterials. 2014;35(18):4888-4900. doi: 10.1016/j.biomaterials.2014.02.046.
  • Shi Q, Gao J, Jiang Y, et al. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into endometrial cells. Stem Cell Res Ther. 2017;8(1). doi: 10.1186/s13287-017-0700-5.
  • Fayazi M, Salehnia M, Ziaei S. In-vitro construction of endometrial-like epithelium using CD146 + mesenchymal cells derived from human endometrium. Reprod Biomed Online. 2017;35(3):241-252. doi: 10.1016/j.rbmo.2017.05.020.
  • Zhao J, Zhang Q, Wang Y, Li Y. Uterine Infusion With Bone Marrow Mesenchymal Stem Cells Improves Endometrium Thickness in a Rat Model of Thin Endometrium. Reproductive Sciences. 2014;22(2):181-188. doi: 10.1177/1933719114537715.
  • Jing Z, Qiong Z, Yonggang W, Yanping L. Rat bone marrow mesenchymal stem cells improve regeneration of thin endometrium in rat. Fertil Steril. 2014;101(2):587-594.e3. doi: 10.1016/j.fertnstert.2013.10.053.
  • Wang H, Lü S, Lin Q, et al. Reconstruction of endometrium in vitro via rabbit uterine endometrial cells expanded by sex steroid. Fertil Steril. 2010;93(7):2385-2395. doi: 10.1016/j.fertnstert.2009.01.091.
  • Takagi S, Shimizu T, Kuramoto G, et al. Reconstruction of functional endometrium-like tissue in vitro and in vivo using cell sheet engineering. Biochem Biophys Res Commun. 2014;446(1):335-340. doi: 10.1016/j.bbrc.2014.02.107.
  • Miyazaki K, Maruyama T. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix. Biomaterials. 2014;35(31):8791-8800. doi: 10.1016/j.biomaterials.2014.06.052.
  • Kuramoto G, Shimizu T, Takagi S, et al. Endometrial regeneration using cell sheet transplantation techniques in rats facilitates successful fertilization and pregnancy. Fertil Steril. 2018;110(1):172-181.e4. doi: 10.1016/j.fertnstert.2018.03.007.
  • House M, Sanchez C, Rice W, et al. Cervical Tissue Engineering Using Silk Scaffolds and Human Cervical Cells. Tissue Engineering Part A. 2010;16(6):2101-2112. doi: 10.1089/ten.tea.2009.0457.
  • De Gregorio V, Imparato G, Urciuolo F, et al. An Engineered Cell-Instructive Stroma for the Fabrication of a Novel Full Thickness Human Cervix Equivalent In Vitro. Adv Healthc Mater. 2017;6(11):1601199. doi: 10.1002/adhm.201601199.
  • De Filippo R, Yoo J, Atala A. Engineering of Vaginal Tissue in Vivo. Tissue Eng. 2003;9(2):301-306. doi: 10.1089/107632703764664765.
  • Li Y, Liu F, Zhang Z, et al. Bone marrow mesenchymal stem cells could acquire the phenotypes of epithelial cells and accelerate vaginal reconstruction combined with small intestinal submucosa. Cell Biol Int. 2015;39(11):1225-1233. doi: 10.1002/cbin.10495.
  • Raya-Rivera A, Esquiliano D, Fierro-Pastrana R et al. Tissue-engineered autologous vaginal organs in patients: a pilot cohort study. The Lancet. 2014;384(9940):329-336. doi: 10.1016/s0140-6736(14)60542-0.
  • Ho M, Heydarkhan S, Vernet D, et al. Stimulating Vaginal Repair in Rats Through Skeletal Muscle–Derived Stem Cells Seeded on Small Intestinal Submucosal Scaffolds. Obstetrics & Gynecology. 2009;114(2, Part 1):300-309. doi: 10.1097/aog.0b013e3181af6abd.
  • Mangera A, Bullock A, Roman S, Chapple C, MacNeil S. Comparison of candidate scaffolds for tissue engineering for stress urinary incontinence and pelvic organ prolapse repair. BJU Int. 2013;112(5):674-685. doi: 10.1111/bju.12186.
  • Ulrich D, Muralitharan R, Gargett C. Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opin Biol Ther. 2013;13(10):1387-1400. doi: 10.1517/14712598.2013.826187.
  • Ulrich D, Edwards S, Su K, et al. Human Endometrial Mesenchymal Stem Cells Modulate the Tissue Response and Mechanical Behavior of Polyamide Mesh Implants for Pelvic Organ Prolapse Repair. Tissue Engineering Part A. 2013. doi: 10.1089/ten.tea.2013.0170.
  • Li Q, Wang J, Liu H, Xie B, Wei L. Tissue-engineered mesh for pelvic floor reconstruction fabricated from silk fibroin scaffold with adipose-derived mesenchymal stem cells. Cell Tissue Res. 2013;354(2):471-480. doi: 10.1007/s00441-013-1719-2.
  • Ding J, Han Q, Deng M, et al. Induction of human umbilical cord mesenchymal stem cells into tissue-forming cells in a murine model: implications for pelvic floor reconstruction. Cell Tissue Res. 2018;372(3):535-547. doi: 10.1007/s00441-017-2781-y.
  • Создание тканеинженерной конструкции с применением мезенхимальных стволовых клеток костного мозга для хирургического лечения пролапса гениталий / А.И. Ищенко [и др.] // Российский вестник акушера-гинеколога. - 2017. - Т. 17, № 1. - С. 21-26.
  • Применение современных биотехнологий в хирургическом лечении пролапса тазовых органов / Я.Ю. Сулина // Российский вестник акушера-гинеколога. - 2016. - Т. 16,№ 2. - С. 46-52.

Views

Abstract - 7

PDF (Russian) - 0

PDF (Russian) - 0

PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies