Micro-RNAs in the Diagnosis of Cutaneous T-Cell Lymphomas

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Rationale. Early diagnosis of mycosis fungoides (MF), as the most common form of T-cell lymphoma, presents significant challenges. The diagnosis of MF is based on the following criteria: comprehensive assessment of the clinical picture of the disease, histological and immunohistochemical examination of the skin, and determination of rearrangement of the T-cell receptor gene, but even this does not always aid in diagnosis. The aim of the study is to investigate the expression of micro-RNAs (miR-223, -423, -663, -16, -326, -711) in the blood plasma and leukocytes of patients with a presumptive diagnosis of MF to improve the disease diagnosis. Methods. This study included 50 patients aged 24 to 79 years, of whom 30 patients had a preliminary diagnosis of MF and 20 patients with small plaque parapsoriasis, who formed the comparison group. All patients underwent histological, immunohistochemical examination of skin biopsies, and determination of micro-RNA (miR-223, -423, -663, -16, -326, -711) expression in blood plasma and leukocytes by real-time PCR. Results. Analyzing the results of clinical-anamnestic, histological, and immunohistochemical research methods, the diagnosis of MF was established in 22 of 30 (73.3%) patients, of which 9 of 14 (64.3%) were in the early stages of the disease. small plaque parapsoriasis. Conclusion. During our study, it was found that the studied micro-RNAs (miR-326, -663, -711, -223, -423, -16) in the blood plasma and leukocytes of patients with MF have statistically significant levels of expression compared to the low level of expression of these micro-RNAs in patients with small plaque parapsoriasis. The expression of micro-RNAs we studied in the skin contributes to the improvement of MF diagnosis with an accuracy of up to 90%.

Full Text

Restricted Access

About the authors

Olga Yu. Olisova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: olisovaolga@mail.ru
ORCID iD: 0000-0003-2482-1754

MD, PhD, Professor, Corresponding Member of the RAS

Россия, Moscow

Jessika R. Amshinskaya

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: dr.jessika@yandex.ru
ORCID iD: 0000-0002-3907-2189

PhD Student

Россия, Moscow

Vladimir V. Demkin

Institute of Molecular Genetics of the National Research Center “Kurchatov Institute”

Email: vdemkin@img.ras.ru
ORCID iD: 0000-0002-3408-6100

MD, PhD

Россия, Moscow

References

  1. Воронцова А.А., Карамова А.Э., Знаменская Л.Ф. Современные представления о патогенезе грибовидного микоза // Онкогематология. — 2018. — Т. 13. — № 3. — С. 39–46. [Vorontsova АА, Karamova EА, Znamenskaya LF. Modern concepts of the mycosis fungoides pathogenesis. Onkogematologiya = Oncohematology. 2018;13(3):39–46. (In Russ.)] doi: https://doi.org/10.17650/1818-8346-2018-13-3-39-46
  2. Hodak E, Amitay-Laish I. Mycosis fungoides: a great imitator. Clin Dermatol. 2019;37(3):255–267. doi: https://doi.org/10.1016/j.clindermatol.2019.01.004
  3. Жуков А.С., Белоусова И.Э., Самцов А.В. Иммунологические и молекулярно-генетические механизмы развития грибовидного микоза // Вестник дерматологии и венерологии. — 2015. — Т. 91. — № 4. — С. 42–50. [Zhukov AS, Belousova IE, Samtsov AV. Immunological and molecular genetic mechanisms of the development of mycosis fungoides. Vestnik Dermatologii i Venerologii. 2015;91(4):42–50. (In Russ.)]
  4. Quinodoz S, Guttman M. Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol. 2014;24(11):651–663. doi: https://doi.org/10.1016/j.tcb.2014.08.009
  5. Campbell JJ, Clark R, Watanabe R, et al. Sezary syndrome andmycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010;116(5):767–771. doi: https://doi.org/10.1182/blood-2009-11-251926
  6. Girardi M, Edelson RL. Cutaneous T-cell lymphoma: pathogenesis and treatment. Oncology (Williston Park). 2000;14(7):1061–1070.
  7. Федеральные клинические рекомендации. Дерматовенерология 2015: Болезни кожи. Инфекции, передаваемые половым путем. — 5-е изд., перераб. и доп. — М.: Деловой экспресс, 2016. — 768 с. [Dermatovenerologiya: federal’nye klinicheskie rekomendacii. 2015: Bolezni kozhi. Infekcii, peredavaemye polovym putem. 5-e izd., pererab. i dop. Moscow: Delovoj ekspress; 2016.768 р. (In Russ.)]
  8. Виноградова Ю.Е., Зингерман Б.В. Нозологические формы и выживаемость пациентов с Т- и НК-клеточными лимфатическими опухолями, наблюдающихся в ГНЦ в течение 10 лет // Клиническая онкогематология. — 2011. — T. 4. — № 3. — C. 201–212. [Vinogradova YuE, Zingerman BV. Nosological forms and survival of patients with T- and NK-cell lymphoid neoplasms observed in HSC during 10 years. Clinical Oncohematology. 2011;4(3):201–212. (In Russ.)]
  9. Jawed SI, Myskowski PL, Horwitz S, et al. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome): part I. Diagnosis: clinical and histopatho logic features and new molecular and bio logic markers. J Am Acad Dermatol. 2014;70(2):205.е1–16. doi: https://doi.org/10.1016/j.jaad.2013.07.049
  10. Moyal L, Feldbaum N, Goldfeiz N, et al. The Therapeutic Potential of AN-7, a Novel Histone Deacetylase Inhibitor, for Treatment of Mycosis Fungoides/Sezary Syndrome Alone or with Doxorubicin. PLoS One. 2016:11(1):e0146115. doi: https://doi.org/10.1371/journal.pone.01461151
  11. Benjamin Chase A, Markel K, Tawa MC. Optimizing care and compliance for the treatment of mycosis fungoides cutaneous T-cell lymphoma with mechlorethamine gel. Clin J Oncol Nurs. 2015;19(6):Е131–139. doi: https://doi.org/10.1188/15.CJON.E131-E139
  12. Olisova OY, Grekova EV, Zaletaev DV, et al. Overexpression of STAT4 at early stages of mycosis fungoides: Coincidence or not? Australas J Dermatol. 2021;62(1):e119–e120. doi: https://doi.org/10.1111/ajd.13420
  13. Shen X, Wang B, Li K, et al. MicroRNA Signatures in Diagnosis and Prognosis of Cutaneous T-Cell Lymphoma. J Invest Dermatol. 2018;138(9):2024–2032. doi: https://doi.org/10.1016/j.jid.2018.03.1500
  14. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2018;39(Database issue):D152–157. doi: https://doi.org/10.1093/nar/gkq1027
  15. Zackheim HS, McCalmont TH. Mycosis fungoides: the great imitator. J Am Acad Dermatol. 2002;47(6):914–918. doi: https://doi.org/10.1067/mjd.2002.124696
  16. Peterson SM, Thompson JA, Ufkin ML, et al. Common features of microRNA target prediction tools. Front Genet. 2014;5:23. doi: https://doi.org/10.3389/fgene.2014.00023
  17. Sadakierska-Chudy A. MicroRNAs: Diverse Mechanisms of Action and Their Potential Applications as Cancer Epi-Therapeutics. Biomolecules. 2020;10(9):1285. doi: https://doi.org/10.3390/biom10091285
  18. Wong HK, Mishra A, Hake T, et al. Evolving insights in the pathogenesis and therapy of cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome). Br J Haematol. 2011;155(2):150–166. doi: https://doi.org/10.1111/j.1365-2141.2011.08852.x
  19. Mardani R, Jafari Najaf Abadi MH, Motieian M, et al. Micro RNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol. 2019;234(6):8465–8486. doi: https://doi.org/10.1002/jcp.27776
  20. Chen HN, Liu CM, Yang H, et al. 5-Aminolevulinic acid induces apoptosis via NF-κB/JNK pathway in human oral cancer Ca9-22 cells. J Oral Pathol Med. 2011;40(6):483–490. doi: https://doi.org/10.1111/j.1600-0714.2010.00973.x
  21. Ralfkiaer U, Hagedorn PH, Bangsgaard N, et al. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood. 2011;118(22):5891–5900. doi: https://doi.org/10.1182/blood-2011-06-358382
  22. Olivo M, Ali-Seyed M. Apoptosis-signalling mechnisms in human cancer cells induced by Calphostin-PDT. Int J Oncol. 2007;30(3):537–548.
  23. Phillips DC, Woollard KJ, Griffiths HR. The anti-inflammatory actions of methotrexate are critically dependent upon the production of reactive oxygen species. Br J Pharmacol. 2003;138(3):501–511. doi: https://doi.org/10.1038/sj.bjp.0705054
  24. DeSimone JA, Guenova E, Carter JB, et al. Low-dose high-dose-rate brachytherapy in the treatment of facial lesions of cutaneous T-cell lymphoma. J Am Acad Dermatol. 2013;69(1):61–65. doi: https://doi.org/10.1016/j.jaad.2012.12.975
  25. Garibyan L, Cotter SE, Hansen JL, et al. Palliative treatment for in-transit cutaneous metastases of Merkel cell carcinoma using surface/mold computer-optimized high-dose-rate brachytherapy. Cancer J. 2013;19(4):283–287. doi: https://doi.org/10.1097/PPO.0b013e31829e3566
  26. Статистический анализ таблиц 2×2 в диагностических исследованиях / авт.-сост. А.В. Тишков и др. — СПб.: СПбГМУ, 2013. — 17 с. [Statistical Analysis of 2×2 Tables in Diagnostic Studies. Author-comp. A.V. Tishkov et al. St. Petersburg: SPbSMU; 2013. 17 p. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. ROC-кривая, соответствующая взаимосвязи miR-223 и грибовидного микоза

Download (111KB)
3. Рис. 2. ROC-кривая, соответствующая взаимосвязи miR-16 и грибовидного микоза

Download (84KB)
4. Рис. 3. ROC-кривая, соответствующая взаимосвязи miR-711 и грибовидного микоза

Download (91KB)

Copyright (c) 2023 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies