Epigenetics of Friedreich’s Disease: Methylation of the (GAA)n-Repeats Region in FXN Gene

Cover Page
Open Access Open Access
Restricted Access Subscription or Fee Access

Abstract


Background: Friedreich’s disease (FD) is the most common hereditary ataxia. It is associated, most frequently, with homozygous GAA repeats expansion in intron 1 of the FXN gene. Methylation of the FXN gene can play an important role in the pathogenesis of FD. Aims: to study methylation pattern in CpG sites flanking GAA-expansion in intron 1 of the FXN gene in patients with FD and their heterozygous relatives as well as its relationship with clinical features. Materials and methods: We studied DNA samples from patients with FD (n=18), their relatives carrying heterozygous GAA expansion (n=12), and control group (n=15). Pattern of methylation was studied by direct sequencing of DNA regions after bisulphide processing. Results: We analyzed 18 CpG sites in the UP-GAA region of the gene (before GAA-repeats) and 12 CpG sites in the DOWN-GAA region (after GAA-repeats). In the UP-region, the mean methylation level of CpG sites in FD patients was higher compared to controls (n=15) (р<0.05), while in the DOWN-region there was a decrease of mean methylation level in FD compared to controls (р<0.05). Analysis of methylation level in different CpG sites in the UP-GAA region revealed hypermethylation for 15 of 18 CpG-sites as compared to controls (р<0.05). The most significant differences in methylation level in the UP-GAA region were seen for CpG sites 50−54, 57 and 58. In contrast, in the DOWN-GAA region almost all CpG sites were fully methylated in the control group, while in FD patients methylation was significantly lower (р<0.05). We revealed positive correlation of mean methylation level and more expanded allele length for the UP-GAA region in FD (r=0.63; p=0.03), and no correlations for the DOWN-GAA region. In heterozygous carriers we observed an analogous positive correlations in the UP-GAA region for CpG site 50 (r=0.77; p=0.04), while in the DOWN-GAA region there was inverse correlation of methylation with GAA repeat number in the expanded allele (r=-0.83, p=0.02). Negative correlation was found between the hypermethylation of some CpG-sites in the UP-GAA region and age of the disease onset (p<0.05). Conclusion: We revealed hypermethylation in the UP-GAA region and hypomethylation in the DOWN-GAA region in patients with FD compared to controls and correlations of methylation level with the GAA expansion length and age of disease onset.


Nataliya Yu. Abramycheva

Research Center of Neurology

Email: nataabr@rambler.ru
ORCID iD: 0000-0001-9419-1159

Russian Federation

PhD.

SPIN-код: 6888-6008

Ekaterina Yu. Fedotova

Research Center of Neurology

Author for correspondence.
Email: ekfedotova@gmail.com
ORCID iD: 0000-0001-8070-7644

Russian Federation

MD, PhD.

SPIN-код: 3466-2212

Evgenii P. Nuzhnyi

Research Center of Neurology

Email: enuzhny@mail.ru
ORCID iD: 0000-0003-3179-7668

Russian Federation

MD.

SPIN-код: 5571-3386

Natalia S. Nikolaeva

Research Center of Neurology

Email: nikolaeva.n0211@yandex.ru
ORCID iD: 0000-0002-4813-9912

Russian Federation SPIN-код: 1604-1680

Sergey A. Klyushnikov

Research Center of Neurology

Email: sergeklyush@gmail.com
ORCID iD: 0000-0002-8752-7045

Russian Federation

MD.

SPIN-код: 1769-2262

Margarita V. Ershova

Research Center of Neurology

Email: mvedoc@mail.ru
ORCID iD: 0000-0002-8188-5140

Russian Federation

MD, PhD.

SPIN-код: 9922-0883

Alexander S. Tanas

Research Center of Medical Genetics

Email: tanas80@gmail.com
ORCID iD: 0000-0002-2177-6743

Russian Federation

PhD.

Moscow.

SPIN-код: 2947-7067

Sergey N. Illarioshkin

Research Center of Neurology

Email: snillario@gmail.com
ORCID iD: 0000-0002-2704-6282

Russian Federation

MD, PhD, professor.

SPIN-код: 8646-9426

  1. Campuzano V, Montermini L, Molto MD, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271(5254):1423−1427. doi: 10.1126/science.271.5254.1423.
  2. Delatycki MB, Williamson R, Forrest SM. Friedreich ataxia: an overview. J Med Genet. 2000;37(1):1−8. doi: 10.1136/jmg.37.1.1.
  3. Иллариошкин С.Н., Ершова М.В. Атаксия Фридрейха. В кн.: Наследственные атаксии и параплегии. / Под ред. Иллариошкина С.Н., Руденской Г.Е., Ивановой-Смоленской И.А., и др. ― М.: МЕДпресс-информ; 2006. ― С. 49−113.
  4. Pandolfo M. The molecular basis of Friedreich ataxia. Adv Exp Med Biol. 2002;516:99−118. doi: 10.1007/978-1-4615-0117-6_5.
  5. Burk K. Friedreich ataxia: current status and future prospects. Cerebellum Ataxias. 2017;(4):4. doi: 10.1186/s40673-017-0062-x.
  6. Hanauer A, Chery M, Fujita R, et al. The Friedreich ataxia gene is assigned to chromosome 9q13-q21 by mapping of tightly linked markers and shows linkage disequilibrium with D9S15. Am J Hum Genet. 1990;46(1):133−137.
  7. Campuzano V, Montermini L, Lutz Y, et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet. 1997;6(11):1771–1780. doi: 10.1093/hmg/6.11.1771.
  8. Bidichandani SI, Ashizawa T, Patel PI. The GAA tripletrepeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet. 1998;62(1):111–121. doi: 10.1086/301680.
  9. Rouault TA, Tong WH. Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol. 2005;6(4):345–351. doi: 10.1038/nrm1620.
  10. Li K, Besse EK, Ha D, et al. Iron-dependent regulation of frataxin expression: implications for treatment of Friedreich ataxia. Hum Mol Genet. 2008;17(15):2265–2273. doi: 10.1093/hmg/ddn127.
  11. Hughes JT, Brownell B, Hewer RL. The peripheral sensory pathway Friedreich’s ataxia. An examination by light and electron microscopy of the posterior nerve roots, posterior root ganglia, and peripheral sensory nerves in cases of Friedreich’s ataxia. Brain. 1968;91(4):803−818. doi: 10.1093/brain/91.4.803.
  12. Murayama S, Bouldin TW, Suzuki K. Pathological study of corticospinal-tract degeneration in Friedreich’s ataxia. Neuropathol Appl Neurobiol. 1992;18(1):81−86. doi: 10.1111/j.1365-2990.1992.tb00766.x.
  13. Filla A, De Michele G, Cavalcanti F, et al. The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet. 1996;59(3):554–560.
  14. Santoro L, De Michele G, Perretti A, et al. Relation between trinucleotide GAA repeat length and sensory neuropathy in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry. 1999;66(1):93–96. doi: 10.1136/jnnp.66.1.93.
  15. Иллариошкин С.Н., Ершова М.В., Клюшников С.А., и др. Спастическая атаксия как редкий клинический вариант болезни Фридрейха // Неврологический журнал. ― 2000. ― Т.5. ― №1 ― С. 40−43.
  16. Иллариошкин С.Н., Ершова М.В., Багыева Г.Х., и др. Атипичные фенотипы болезни Фридрейха: ДНК-анализ и клинико-генетические сопоставления // Медицинская генетика. ― 2004. ― Т.3. ― №1 ― С. 36−42.
  17. Ozanne SE, Constancia M. Mechanisms of disease: the developmental origins of disease and the role of the epigenotype. Nat Clin Pract Endocrinol Metab. 2007;3(7):539–546. doi: 10.1038/ncpendmet0531.
  18. Margueron R, Reinberg D. Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet. 2010;11(4):285–296. doi: 10.1038/nrg2752.
  19. Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 2009;8(11):1056–1072. doi: 10.1016/S1474-4422(09)70262-5.
  20. Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975;187(4173):226–232. doi: 10.1126/science.1111098.
  21. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69(6):915–926. doi: 10.1016/0092-8674(92)90611-f.
  22. Dhasarathy A, Wade PA. The MBD protein family-reading an epigenetic mark? Mutat Res. 2008;647(1−2):39–43. doi: 10.1016/j.mrfmmm.2008.07.007.
  23. Shen L, Kondo Y, Guo Y, et al. Genomewide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet. 2007;3(10):2023–2036. doi: 10.1371/journal.pgen.0030181.
  24. Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6(8):597–610. doi: 10.1038/nrg1655.
  25. Herman D, Jenssen K, Burnett R, et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol. 2006;2(10):551–558. doi: 10.1038/nchembio815.
  26. Libri V, Yandim C, Athanasopoulos S, et al. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: an exploratory, open-label, dose-escalation study. Lancet. 2014;384(9942):504–513. doi: 10.1016/S0140-6736(14)60382-2.
  27. Evans-Galea MV, Carrodus N, Rowley SM, et al. FXN methylation predicts expression and clinical outcome in Friedreich ataxia. Ann Neurol. 2012;71(4):487–497. doi: 10.1002/ana.22671.
  28. De Jaco A, Camp S, Taylor P. Influence of the 5’ intron in the control of acetylcholinesterase gene expression during myogenesis. Chem Biol Interact. 2005;157−158:372–373. doi: 10.1016/j.cbi.2005.10.058.
  29. Lee JG, Dahi S, Mahimkar R, et al. Intronic regulation of matrix metalloproteinase-2 revealed by in vivo transcriptional analysis in ischemia. Proc Natl Acad Sci U S A. 2005;102(45):16345–16350. doi: 10.1073/pnas.0508085102.
  30. Greene E, Mahishi L, Entezam L, et al. Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Research. 2007;35(10):3383–3390. doi: 10.1093/nar/gkm271.
  31. Baralle M, Pastor T, Bussani E, et al. Influence of Friedreich ataxia GAA noncoding repeat expansions on pre-mRNA processing. Am J Hum Genet. 2008;83(1):77–88. doi: 10.1016/j.ajhg.2008.06.018.
  32. Al-Mahdawi S, Pinto RM, Ismail O, et al. The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet. 2008;17(5):735–746. doi: 10.1093/hmg/ddm34.
  33. Evans-Galea MV, Lockhart PJ, Galea CA, et al. Beyond loss of frataxin: the complex molecular pathology of Friedreich ataxia. Discov Med. 2014;17(91):25−35.
  34. Pandolfo M. Friedreich ataxia. Arch Neurol. 2008;65(10):1296−1303. doi: 10.1001/archneur.65.10.1296.
  35. Yandim C, Natisvili T, Festenstein R. Gene regulation and epigenetics in Friedreich’s ataxia. J Neurochem. 2013;126(Suppl 1):21−42. doi: 10.1111/jnc.12254.
  36. Li K, Singh A, Crooks DR, et al. Expression of human frataxin is regulated by transcription factors SRF and TFAP2. PLos One. 2010;5(8):e12286. doi: 10.1371/journal.pone.0012286.
  37. Serrano M. Epigenetic cerebellar disease. Hand Clin Neurol. 2018;155:227−244. doi: 10.1016/B978-0-444-64189-2.00015-9.
  38. Castaldo I, Pinelli M, Monticelli A, et al. DNA methylation in intron 1 of the frataxin gene is related to GAA repeat length and age of onset in Friedreich ataxia patients. J Med Genet. 2008;45(12):808–812. doi: 10.1136/jmg.2008.058594.
  39. Illarioshkin SN, Bagieva GKh, Klyushnikov SA, et al. Different phenotypes of Friedreich’s ataxia within one “pseudo-dominant” genealogy: relationships between trinucleotide (GAA) repeat lengths and clinical features. Eur J Neurol. 2000;7:535−540. doi: 10.1046/j.1468-1331.2000.t01-1-00113.x.

Views

Abstract - 53

PDF (Russian) - 0

Cited-By


PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies