Preview

Вестник Российской академии медицинских наук

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Онколитические вирусы как иммунотерапевтические агенты в лечении злокачественных новообразований

https://doi.org/10.15690/vramn1091

Полный текст:

Аннотация

Онколитические вирусы представляют собой стремительно развивающийся класс терапевтических агентов для борьбы со злокачественными новообразованиями, которые позволяют эффективно инфицировать и разрушать опухолевые клетки, оставляя интактными здоровые ткани. Многие вирусы обладают естественной противоопухолевой активностью, вызывая цитолиз раковых клеток за счет прямого патогенного действия. Однако наряду с неиммуногенной клеточной гибелью онколитические вирусы способны индуцировать иммуногенные формы клеточной смерти (иммуногенный апоптоз, пироптоз и др.), сопровождающиеся высвобождением из опухолевых клеток DAMPs (молекулярных паттернов, ассоциированных с повреждением) и ТААs (опухольассоцированных антигенов), что приводит к активации адаптивного противоопухолевого иммунного ответа. Естественная активация иммунитета в результате вирусной инфекции оказывается, однако, недостаточно эффективной для уничтожения опухоли, что может быть решено путем создания генно-модифицированных штаммов различных вирусов, в которые встраиваются иммуностимулирующие трансгены: гранулоцитарно-макрофагальный колониестимулирующий фактор (GM-CSF), интерлейкины (IL2, 15, 12), ТАА или костимулирующие лиганды (CD), а также используется подход «prime-boost», что дополнительно повышает безопасность и эффективность онколитической виротерапии. Предварительные результаты рандомизированных клинических испытаний рекомбинантных онколитических вирусов с повышенной иммуногенностью подтверждают их эффективность, однако для создания полноценных препаратов для онкотерапии на основе онколитических вирусов требуется дальнейшая оптимизация этих подходов.

Об авторах

Александр Иванович Глухов
Первый Московский государственный медицинский университет имени И. М. Сеченова (Сеченовский Университет); Московский Государственный Университет им. М.В. Ломоносова
Россия

Профессор, доктор биологических наук, заведующий кафедрой биологической химии Первого МГМУ имени И. М. Сеченова (Сеченовский Университет); ведущий научный сотрудник, профессор Биологического факультета МГУ им. М.В. Ломоносова.

119991, Москва, ул. Трубецкая, д. 8, стр. 2.

SPIN-код: 3926-8485



Дмитрий Алексеевич Сивохин
Первый Московский государственный медицинский университет имени И. М. Сеченова (Сеченовский Университет)
Россия

Студент.

SPIN-код: 8362-3570



Дарья Александровна Серяк
Первый Московский государственный медицинский университет имени И. М. Сеченова (Сеченовский Университет)
Россия

Студентка.

SPIN-код: 8395-4172



Татьяна Сергеевна Родионова
Первый Московский государственный медицинский университет имени И. М. Сеченова (Сеченовский Университет)
Россия

Студентка.

SPIN-код: 5948-8248



Маргарита Игоревна Камынина
Первый Московский государственный медицинский университет имени И. М. Сеченова (Сеченовский Университет)
Россия

Студентка.

SPIN-код: 9756-5856



Список литературы

1. Zhang S. Progress in cancer immunotherapy. Adv Exp Med Biol. 2016;909:v−vi. doi: 10.1007/978-94-017-7555-7.

2. Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res. 2014;2(4):295–300. doi: 10.1158/2326-6066.CIR-14-0015.

3. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci. 2016;107(10):1373–1379. doi: 10.1111/cas.13027.

4. Tsun A, Miao XN, Wang CM, Yu DC. Oncolytic immunotherapy for treatment of cancer. Adv Exp Med Biol. 2016;909:241−283. doi: 10.1007/978-94-017-7555-7_5.

5. Cassel WA, Murray DR, Phillips HS. A phase II study on the postsurgical management of stage II malignant melanoma with a Newcastle disease virus oncolysate. Cancer. 1983;52(5):856–860. doi: 10.1002/1097-0142(19830901)52:5<856::aid-cncr2820520519>3.0.co;2-4.

6. Hammerich L, Bhardwaj N, Kohrt HE, Brody JD. In situ vaccination for the treatment of cancer. Immunotherapy. 2016;8(3):315–330. doi: 10.2217/imt.15.120.

7. Doniņa S, Strēle I, Proboka G, et al. Adapted ECHO-7 virus rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res. 2015;25(5):421–426. doi: 10.1097/CMR.0000000000000180.

8. Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–2788. doi: 10.1200/JCO.2014.58.3377.

9. Nobel Foundation. The 2018 Nobel Prize in Physiology or Medicine is being awarded jointly to James P. Allison and Tasuku Honjo for their discovery of cancer therapy by inhibition of negative immune regulation [Internet]. ScienceDaily, 2018 [cited 2018 October 1]. Available from: https://www.sciencedaily.com/releases/2018/10/181001093316.htm.

10. Aurelian L. Oncolytic virotherapy: the questions and the promise. Oncolytic Virother. 2013;2:19–29. doi: 10.2147/OV.S39609.

11. Shashkova EV, May SM, Doronin K, Barry MA. Expanded anticancer therapeutic window of hexon-modified oncolytic adenovirus. Mol Ther. 2009;17(12):2121–2130. doi: 10.1038/mt.2009.217.

12. Chaurasiya S, Warner S. Viroimmunotherapy for colorectal cancer : clinical studies. Biomedicines. 2017;5(1). pii: E11. doi: 10.3390/biomedicines5010011.

13. Elsedawy NB, Russell SJ. Oncolytic vaccines. Expert Rev Vaccines. 2013;12(10):1155–1172. doi: 10.1586/14760584.2013.836912.

14. Rajani KR, Vile RG. Harnessing the power of onco-immunotherapy with checkpoint inhibitors. Viruses. 2015;7(11):5889–5901. doi: 10.3390/v7112914.

15. Breitbach CJ, Lichty BD, Bell JC. Oncolytic viruses: therapeutics with an identity crisis. EBioMedicine. 2016;9:31–36. doi: 10.1016/j.ebiom.2016.06.046.

16. Simovic B, Walsh SR, Wan Y. Mechanistic insights into the oncolytic activity of vesicular stomatitis virus in cancer immunotherapy. Oncolytic Virotherapy. 2015;4:157–167. doi: 10.2147/OV.S66079.

17. Schirrmacher V. Oncolytic Newcastle disease virus as a prospective anti-cancer therapy. A biologic agent with potential to break therapy resistance. Expert Opin Biol Ther. 2015;15(12):1757–1771. doi: 10.1517/14712598.2015.1088000.

18. Fountzilas C, Patel S, Mahalingam D. Review: oncolytic virotherapy, updates and future directions. Oncotarget. 2015;8(60):102617–102639. doi: 10.18632/oncotarget.18309.

19. Havunen R, Siurala M, Sorsa S, et al. Oncolytic adenoviruses armed with tumor necrosis factor alpha and interleukin-2 enable successful adoptive cell therapy. Mol Ther Oncolytics. 2017;4:77–86. doi: 10.1016/j.omto.2016.12.004.

20. Guo ZS, Liu Z, Bartlett DL. Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front Oncol. 2014;4:74. doi: 10.3389/fonc.2014.00074.

21. Simon EJ, Howells MA, Stuart JD, Boehme KW. Serotype-specific killing of large cell carcinoma cells by reovirus. Viruses. 2017;9(6). pii: E140. doi: 10.3390/v9060140.

22. De Munck J, Binks A, McNeish IA, Aerts JL. Oncolytic virus-induced cell death and immunity: a match made in heaven? J Leukoc Biol. 2017;102(3):631−643. doi: 10.1189/jlb.5RU0117-040R.

23. Tazawa H, Kuroda S, Hasei J, et al. Impact of autophagy in oncolytic adenoviral therapy for cancer. Int J Mol Sci. 2017;18(7):1–13. doi: 10.3390/ijms18071479.

24. Woller N, Gürlevik E, Ureche C-I, et al. Oncolytic viruses as anticancer vaccines. Front Oncol. 2014;4:188. doi: 10.3389/fonc.2014.00188.

25. Colunga AG, Laing JM, Aurelian L. The HSV-2 mutant DeltaPK induces melanoma oncolysis through nonredundant death programs and associated with autophagy and pyroptosis proteins. Gene Ther. 2010;17(3):315–327. doi: 10.1038/gt.2009.126.

26. Bartlett DL, Liu Z, Sathaiah M, et al. Oncolytic viruses as therapeutic cancer vaccines. Mol Cancer. 2013;12(1):103. doi: 10.1186/1476-4598-12-103.

27. Aurelian L. Oncolytic viruses as immunotherapy: progress and remaining challenges. Onco Targets Ther. 2016;9:2627–2637. doi: 10.2147/OTT.S63049.

28. Ahmad U, Ahmed I, Keong YY, et al. Inhibitory and apoptosis-inducing effects of Newcastle disease virus strain AF2240 on mammary carcinoma cell line. Biomed Res Int. 2015;2015:127828. doi: 10.1155/2015/127828.

29. Кешелава В.В. Использование иммуностимулирующего действия онколитического вируса болезни Ньюкасла при лечении рака репродуктивных органов // Эпидемиология и вакцинопрофилактика. ― 2010. ― №5 ― С. 86–93.

30. Gollamudi R, Ghalib MH, Desai KK, et al. Intravenous administration of reolysin, a live replication competent RNA virus is safe in patients with advanced solid tumors. Invest New Drugs. 2010;28(5):641–649. doi: 10.1007/s10637-009-9279-8.

31. Galanis E, Markovic SN, Suman VJ, et al. Phase II trial of intravenous administration of reolysin (reovirus serotype-3-dearing strain) in patients with metastatic melanoma. Mol Ther. 2012;20(10):1998–2003. doi: 10.1038/mt.2012.146.

32. Carew JS, Espitia CM, Zhao W, et al. Oncolytic reovirus inhibits angiogenesis through induction of CXCL10/IP-10 and abrogation of HIF activity in soft tissue sarcomas. Oncotarget. 2017;8(49):86769–86783. doi: 10.18632/oncotarget.21423.

33. Mahalingam D, Goel S, Aparo S, et al. A phase II study of pelareorep (REOLYSIN) in combination with gemcitabine for patients with advanced pancreatic adenocarcinoma. Cancers (Basel). 2018;10(6):1–12. doi: 10.3390/cancers10060160.

34. Jonker DJ, Tang PA, Kennecke H, et al. A Randomized phase two study of FOLFOX6/bevacizumab with or without pelareorep in patients with metastatic colorectal cancer: IND.210, a Canadian Cancer Trials Group Trial. Clin Colorectal Cancer. 2018;17(3):231–239.e7. doi: 10.1016/j.clcc.2018.03.001.

35. Vacchelli E, Martins I, Eggermont A, et al. Trial watch. Oncoimmunology. 2012;1(9):1557–1576. doi: 10.4161/onci.22428.

36. Aitken A, Roy D, Bourgeois-Daigneault M-C. Taking a stab at cancer; Oncolytic virus-mediated anti-cancer vaccination strategies. Biomedicines. 2017;5(1). pii: E3. doi: 10.3390/biomedicines5010003.

37. Heo J, Reid T, Ruo L, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19(3):329–336. doi: 10.1038/nm.3089.

38. Breitbach CJ, Arulanandam R, De Silva N, et al. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res. 2013;73(4):1265–1275. doi: 10.1158/0008-5472.CAN-12-2687.

39. Thorne S, Sampath P. Novel therapeutic strategies in human malignancy: combining immunotherapy and oncolytic virotherapy. Oncolytic Virotherapy. 2015;4:75. doi: 10.2147/OV.S54738.

40. Thomas ED, Meza-Perez S, Bevis KS, et al. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice. J Ovarian Res. 2016;9(1):70. doi: 10.1186/s13048-016-0282-3.

41. Patel D, Foreman P, Nabors B, et al. Design of a phase I clinical trial to evaluate M032, a genetically engineered HSV-1 expressing IL-12, in patients with recurrent/progressive glioblastoma multiforme, anaplastic astrocytoma, or gliosarcoma. Hum Gene Ther Clin Dev. 2016;27(2):69–78. doi: 10.1089/hum.2016.031.

42. Gil M, Seshadri M, Komorowski MP, et al. Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases. Proc Natl Acad Sci. 2013;110(14):E1291–300. doi: 10.1073/pnas.1220580110.

43. Hammerich L, Binder A, Brody JD. In situ vaccination: cancer immunotherapy both personalized and off-the-shelf. Mol Oncol. 2015;9(10):1966–1981. doi: 10.1016/j.molonc.2015.10.016.

44. Fan R, Wang C, Wang Y, et al. Enhanced antitumoral efficacy and immune response following conditionally replicative adenovirus containing constitutive HSF1 delivery to rodent tumors. J Transl Med. 2012;10(1):101. doi: 10.1186/1479-5876-10-101.

45. Li J-L, Liu H-L, Zhang X-R, et al. A phase I trial of intratumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients. Gene Ther. 2009;16(3):376–382. doi: 10.1038/gt.2008.179.

46. Hou W, Sampath P, Rojas JJ, Thorne SH. Oncolytic virus-mediated targeting of PGE2 in the tumor alters the immune status and sensitizes established and resistant tumors to immunotherapy. Cancer Cell. 2016;30(1):108–119. doi: 10.1016/j.ccell.2016.05.012.

47. Mould RC, AuYeung AW, van Vloten JP, et al. Enhancing immune responses to cancer vaccines using multi-site injections. Sci Rep. 2017;7(1):8322. doi: 10.1038/s41598-017-08665-9.

48. Pol JG, Zhang L, Bridle BW, et al. Maraba virus as a potent oncolytic vaccine vector. Mol Ther. 2014;22(2):420–429. doi: 10.1038/mt.2013.249.

49. Bridle BW, Boudreau JE, Lichty BD, et al. Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus. Mol Ther. 2009;17(10):1814–1821. doi: 10.1038/mt.2009.154.

50. Galivo F, Diaz RM, Thanarajasingam U, et al. Interference of CD40L-mediated tumor immunotherapy by oncolytic vesicular stomatitis virus. Hum Gene Ther. 2010;21(4):439–450. doi: 10.1089/hum.2009.143.

51. 46. Loskog A. Immunostimulatory gene therapy using oncolytic viruses as vehicles. Viruses. 2015;7(11):5780–5791. doi: 10.3390/v7112899.

52. Schiza A, Wenthe J, Mangsbo S, et al. Adenovirus-mediated CD40L gene transfer increases teffector/tregulatory cell ratio and upregulates death receptors in metastatic melanoma patients. J Transl Med. 2017;15(1):79. doi: 10.1186/s12967-017-1182-z.

53. Swift SL, Stojdl DF. Big data offers novel insights for oncolytic virus immunotherapy. Viruses. 2016;8(2):14–17. doi: 10.3390/v8020045.

54. Bridle BW, Stephenson KB, Boudreau JE, et al. Potentiating cancer immunotherapy using an oncolytic virus. Mol Ther. 2010;18(8):1430–1439. doi: 10.1038/mt.2010.98.

55. Bridle BW, Clouthier D, Zhang L, et al. Oncolytic vesicular stomatitis virus quantitatively and qualitatively improves primary CD8+ T-cell responses to anticancer vaccines. Oncoimmunology. 2013;2(8):e26013. doi: 10.4161/onci.26013.

56. Bridle BW, Nguyen A, Salem O, et al. Privileged antigen presentation in splenic B cell follicles maximizes T cell responses in prime-boost vaccination. J Immunol. 2016;196(11):4587–4595. doi: 10.4049/jimmunol.1600106.

57. Ribas A, Dummer R, Puzanov I, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017;170(6):1109–1119.e10. doi: 10.1016/j.cell.2017.08.027.

58. Kleinpeter P, Fend L, Thioudellet C, et al. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death-1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition. Oncoimmunology. 2016;5(10):e1220467. doi: 10.1080/2162402X.2016.1220467.

59. Bartee MY, Dunlap KM, Bartee E. Tumor-localized secretion of soluble PD1 enhances oncolytic virotherapy. Cancer Res. Cancer Res. 2017;77(11):2952−2963. doi: 10.1158/0008-5472.CAN-16-1638.


Для цитирования:


Глухов А.И., Сивохин Д.А., Серяк Д.А., Родионова Т.С., Камынина М.И. Онколитические вирусы как иммунотерапевтические агенты в лечении злокачественных новообразований. Вестник Российской академии медицинских наук. 2019;74(2):108-117. https://doi.org/10.15690/vramn1091

For citation:


Glukhov A.I., Sivokhin D.A., Seryak D.A., Rodionova T.S., Kamynina M.I. Oncolytic Viruses As Immunotherapeutic Agents for the Treatment of Malignant Tumors. Annals of the Russian academy of medical sciences. 2019;74(2):108-117. (In Russ.) https://doi.org/10.15690/vramn1091

Просмотров: 134


ISSN 0869-6047 (Print)
ISSN 2414-3545 (Online)