Perspective Nerve Conduits for Stimulation of Regeneration of Damaged Peripheral Nerves

Cover Page
Open Access Open Access
Restricted Access Subscription or Fee Access

Abstract


Nerve damage is a common severe trauma caused by a complete or partial disruption of the integrity of the nerve trunk and appropriate dissociation of the CNS and denervated tissue. «Golden standard» in the treatment of extensive injuries of peripheral nerves is the use of autografts of nerve fibers, but when they are used, pathological disturbances appear in the donor zone and the results of surgical treatment are not always satisfactory. Currently, an alternative to the traditional method is the use of nerve conduits (conductors) for directed regeneration of axons. In this work, the results of the application of nerve conductors from various materials and with various biologically active components in preclinical and clinical studies, as well as conduits used in clinical practice, were analyzed. The efficiency of regeneration was compared, on the basis of the analysis the conductor most suitable for successful nerve regeneration was selected, including approaches for creating innervated tissue engineered constructs. In this work, we have collected research on nerve conductors from various materials with various prescribed properties using certain factors used to treat damage to the peripheral nervous system, showing all the advantages and disadvantages of their use, which makes it possible to develop and create a conduit that meets all the requirements of modern regenerative medicine.


Polina K. Miroshnikova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: p_miroshnikova96@mail.ru
ORCID iD: 0000-0002-0248-5393

Russian Federation

Moscow

Alexey V. Lyundup

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: lyundup@gmail.com
ORCID iD: 0000-0002-0102-5491

Russian Federation

Alexey V. Lyundup,

MD, PhD

8 bld. 2, Trubetskaya street, 119991 Moscow

Nikolay P. Batsalenko

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: morbus007@mail.ru
ORCID iD: 0000-0001-9793-8182

Russian Federation

MD

Moscow

Mikhail E. Krasheninnikov

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: krashen@rambler.ru
ORCID iD: 0000-0002-3574-4013

Russian Federation

MD, PhD.

Moscow

Yuanyuan Zhang

Institute for Regenerative Medicine, Wake Forest University

Email: fyyzhang2016@gmail.com
ORCID iD: 0000-0002-5708-9718

United States

MD, PhD, Professor.

North Carolina

Natalia B. Feldman

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: n_feldman@mail.ru
ORCID iD: 0000-0001-6098-2788

Russian Federation

MD, PhD, Professor.

Moscow

Valeriy V. Beregovykh

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: lyundup@gmail.com
ORCID iD: 0000-0002-0210-4570

Russian Federation

PhD, Professor.

Moscow


  1. Dornseifer U, Matiasek K, Fichter MA, et al. Surgical therapy of peripheral nerve lesions: current status and new perspectives. Zentralbl Neurochir. 2007;68(3):101–110. doi: 10.1055/s-2007-984453.
  2. Ichihara S, Inada Y, Nakamura T. Artificial nerve tubes and their application for repair of peripheral nerve injury: an update of current concepts. Injury. 2008;39 Suppl 4:29–39. doi: 10.1016/j.injury.2008.08.029.
  3. Scholz T, Krichevsky A, Sumarto A, et al. Peripheral nerve injuries: an international survey of current treatments and future perspectives. J Reconstr Microsurg. 2009;25(6):339–344. doi: 10.1055/s-0029-1215529.
  4. English AW, Wilhelm JC, Ward PJ. Exercise, neurotrophins, and axon regeneration in the PNS. Physiology (Bethesda). 2014;29(6):437–445. doi: 10.1152/physiol.00028.2014.
  5. Johnson EO, Soucacos PN. Nerve repair: experimental and clinical evaluation of biodegradable artificial nerve guides. Injury. 2008;39 Suppl 3:S30-36. doi: 10.1016/j.injury.2008.05.018.
  6. Sinis N, Kraus A, Tselis N, et al. Functional recovery after implantation of artificial nerve grafts in the rat ― a systematic review. J Brachial Plex Peripher Nerve Inj. 2009;4:19. doi: 10.1186/1749-7221-4-19.
  7. Maquet V, Martin D, Malgrange B, et al Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds. J Biomed Mater Res. 2000;52(4):639–651. doi: 10.1002/1097-4636(20001215)52:4<639::aid-jbm8>3.0.co;2-g.
  8. Alluin O, Wittmann C, Marqueste T, et al. Functional recovery after peripheral nerve injury and implantation of a collagen guide. Biomaterials. 2009;30(3):363–373. doi: 10.1016/j.biomaterials.2008.09.043.
  9. Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury. 2012;43(5):553–572. doi: 10.1016/J.Injury.2010.12.030.
  10. ir.axogeninc.com [Internet]. Press Releases [cited 2018 Nov 19]. Available from: https://ir.axogeninc.com/press-releases/detail/852/axogen-advances-its-platform-for-nerve-repair-at-annual
  11. Люндуп А.В., Медведев Ю.А., Баласанова К.В., и др. Методы тканевой инженерии костной ткани в челюстно-лицевой хирургии // Вестник Российской академии медицинских наук. — 2013. — Т.68. — №5 — C. 10–15. doi: 10.15690/vramn.v68i5.658.
  12. Martorina F, Casale C, Urciuolo F, et al. In vitro activation of the neuro-transduction mechanism in sensitive organotypic human skin model. Biomaterials. 2017;113:217–229. doi: 10.1016/j.biomaterials.2016.10.051.
  13. Zakhem E, El Bahrawy M, Orlando G, Bitar KN. Biomechanical properties of an implanted engineered tubular gut-sphincter complex. J Tissue Eng Regen Med. 2017;11(12):3398–3407. doi: 10.1002/term.2253.
  14. Massing MW, Robinson GA, Marx CE, et al. Applications of proteomics to nerve regeneration research. In: Alzate O, editor. Neuroproteomics. Series Frontiers in Neuroscience. Ch. 15. Boca Raton, FL, USA: CRC Press/Taylor & Francis; 2010. doi: 10.1201/9781420076264.ch15.
  15. Palispis WA, Gupta R. Surgical repair in humans after traumatic nerve injury provides limited functional neural regeneration in adults. Exp Neurol. 2017;290:106–114. doi: 10.1016/j.expneurol.2017.01.009.
  16. Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–1232. doi: 10.1016/j.cell.2016.01.043.
  17. Lopez-Verrilli MA, Picou F, Court FA. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia. 2013;61(11):1795–1806. doi: 10.1002/glia.22558.
  18. Court FA, Hendriks WT, MacGillavry HD, et al. Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J Neurosci. 2008;28(43):11024–11029. doi: 10.1523/JNEUROSCI.2429-08.2008.
  19. Boyd JG, Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol. 2003;27(3):277–324. doi: 10.1385/mn:27:3:277.
  20. Gyorkos AM, McCullough MJ, Spitsbergen JM. Glial cell line-derived neurotrophic factor (GDNF) expression and NMJ plasticity in skeletal muscle following endurance exercise. Neuroscience. 2014;257:111–118. doi: 10.1016/j.neuroscience.2013.10.068.
  21. Yang P, Wen H, Ou S, et al. IL-6 promotes regeneration and functional recovery after cortical spinal tract injury by reactivating intrinsic growth program of neurons and enhancing synapse formation. Exp Neurol. 2012;236(1):19–27. doi: 10.1016/j.expneurol.2012.03.019.
  22. Sebben AD, Lichtenfels M, da Silva JL. Peripheral nerve regeneration: cell therapy and neurotrophic factors. Rev Bras Ortop. 2015;46(6):643–649. doi: 10.1016/S2255-4971(15)30319-0.
  23. Höke A. A (heat) shock to the system promotes peripheral nerve regeneration. J Clin Invest. 2011;121(11):4231–4234. doi: 10.1172/JCI59320.
  24. Nectow AR, Marra KG, Kaplan DL. Biomaterials for the development of peripheral nerve guidance conduits. Tissue Eng Part B Rev. 2012;18(1):40–50. doi: 10.1089/ten.TEB.2011.0240.
  25. Отделение нейрохирургии НИИ скорой помощи им. Н.В. Склифосовского/Заболевания. Повреждения периферических нервов верхних и нижних конечностей [доступ от 21.10.2018]. Доступ по ссылке http://neurosklif.ru/Diseases/PeripheralNerves.
  26. Zuniga JR. Sensory outcomes after reconstruction of lingual and inferior alveolar nerve discontinuities using processed nerve allograft — a case series. J Oral Maxillofac Surg. 2015;73(4):734–744. doi: 10.1016/j.joms.2014.10.030.
  27. Schmauss D, Finck T, Liodaki E, et al. Is nerve regeneration after reconstruction with collagen nerve conduits terminated after 12 months? The long-term follow-up of two prospective clinical studies. J Reconstr Microsurg. 2014;30(8):561–568. doi: 10.1055/s-0034-1375237.
  28. Weber RA, Breidenbach WC, Brown RE, et al. A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast Reconstr Surg. 2000;106(5):1036–1045. doi: 10.1097/00006534-200109150-00056.
  29. Boeckstyns ME, Sørensen AI, Viñeta JF, et al. Collagen conduit versus microsurgical neurorrhaphy: 2-year follow-up of a prospective, blinded clinical and electrophysiological multicenter randomized, controlled trial. J Hand Surg Am. 2013;38(12):2405–2411. doi: 10.1016/j.jhsa.2013.09.038.
  30. Rinker B, Liau JY. A prospective randomized study comparing woven polyglycolic acid and autogenous vein conduits for reconstruction of digital nerve gaps. J Hand Surg Am. 2011;36(5):775–781. doi: 10.1016/j.jhsa.2011.01.030.
  31. Ханнанова И.Г., Галлямов А.Р., Богов А.А., Журавлев М.Р. Первый опыт применения кондуита для замещения дефекта периферического нерва // Практическая медицина. — 2017. — №8 — С. 161–163.
  32. Mohanna PN, Young RC, Wiberg M, Terenghi G. A composite poly-hydroxybutyrate-glial growth factor conduit for long nerve gap repairs. J Anat. 2003;203(6):553–565. doi: 10.1046/j.1469-7580.2003.00243.x.
  33. Zhang P, Xue F, Kou Y, et al. The experimental study of absorbable chitin conduit for bridging peripheral nerve defect with nerve fasciculu in rats. Artif Cells Blood Substit Immobil Biotechnol. 2008;36(4):360–371. doi: 10.1080/10731190802239040.
  34. de Boer R, Knight AM, Borntraeger A, et al. Rat sciatic nerve repair with a poly-lactic-co-glycolic acid scaffold and nerve growth factor releasing microspheres. Microsurgery. 2011;31(4):293–302. doi: 10.1002/micr.20869.
  35. Liu JJ, Wang CY, Wang JG, et al. Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. J Biomed Mater Res A. 2011;96(1):13–20. doi: 10.1002/jbm.a.32946.
  36. Penna V, Munder B, Stark GB, Lang EM. An in vivo engineered nerve conduit--fabrication and experimental study in rats. Microsurgery. 2011;31(5):395–400. doi: 10.1002/micr.20894.
  37. Erba P, Mantovani C, Kalbermatten DF, et al. Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits. J Plast Reconstr Aesthet Surg. 2010;63(12):e811–e817. doi: 10.1016/j.bjps.2010.08.013.
  38. Canan S, Bozkurt HH, Acar M, et al. An efficient stereological sampling approach for quantitative assessment of nerve regeneration. Neuropathol Appl Neurobiol. 2008;34(6):638–649. doi: 10.1111/j.1365-2990.2008.00938.x.
  39. Luis AL, Rodrigues JM, Lobato JV, et al. Evaluation of two biodegradable nerve guides for the reconstruction of the rat sciatic nerve. Biomed Mater Eng. 2007;17(1):39–52.
  40. Nie X, Zhang YJ, Tian WD, et al. Improvement of peripheral nerve regeneration by a tissue-engineered nerve filled with ectomesenchymal stem cells. Int J Oral Maxillofac Surg. 2007;36(1):32–38. doi: 10.1016/j.ijom.2006.06.005.
  41. Shimizu S, Kitada M, Ishikawa H, et al. Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property. Biochem Biophys Res Commun. 2007;359(4):915–920. doi: 10.1016/j.bbrc.2007.05.212.
  42. Ikeguchi R, Kakinoki R, Matsumoto T, et al. Basic fibroblast growth factor promotes nerve regeneration in a C- -ion-implanted silicon chamber. Brain Res. 2006;1090(1):51–57. doi: 10.1016/j.brainres.2006.03.015.
  43. Midha R, Munro CA, Dalton PD, et al. Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube. J Neurosurg. 2003;99(3):555–565. doi: 10.3171/jns.2003.99.3.0555.
  44. Lee AC, Yu VM, Lowe JB, et al. Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol. 2003;184(1):295–303. doi: 10.1016/S0014-4886(03)00258-9.
  45. McKay Hart A, Wiberg M, Terenghi G. Exogenous leukaemia inhibitory factor enhances nerve regeneration after late secondary repair using a bioartificial nerve conduit. Br J Plast Surg. 2003;56(5):444–450. doi: 10.1016/S0007-1226(03)00134-6.
  46. Xu X, Yee WC, Hwang PY, et al. Peripheral nerve regeneration with sustained release of poly(phosphoester) microencapsulated nerve growth factor within nerve guide conduits. Biomaterials. 2003;24(13):2405–2412. doi: 10.1016/S0142-9612(03)00109-1.
  47. Oh SH, Kang JG, Kim TH, et al. Enhanced peripheral nerve regeneration through asymmetrically porous nerve guide conduit with nerve growth factor gradient. J Biomed Mater Res A. 2018;106(1):52–64. doi: 10.1002/jbm.a.36216.
  48. Mohammadi R, Sanaei N, Ahsan S, et al. Stromal vascular fraction combined with silicone rubber chamber improves sciatic nerve regeneration in diabetes. Chin J Traumatol. 2015;18(4):212–218. doi: 10.1016/j.cjtee.2014.10.005.
  49. Okamoto H, Hata K, Kagami H, et al. Recovery process of sciatic nerve defect with novel bioabsorbable collagen tubes packed with collagen filaments in dogs. J Biomed Mater Res A. 2010;92(3):859–868. doi: 10.1002/jbm.a.32421.
  50. Waitayawinyu T, Parisi DM, Miller B, et al. A comparison of polyglycolic acid versus type 1 collagen bioabsorbable nerve conduits in a rat model: an alternative to autografting. J Hand Surg Am. 2007;32(10):1521–1529. doi: 10.1016/j.jhsa.2007.07.015.
  51. Chiu DT, Janecka I, Krizek TJ, et al. Autogenous vein graft as a conduit for nerve regeneration. Surgery. 1982;91(2):226–233. doi: 10.1097/00006534-198305000-00106.
  52. Chiu DT, Strauch B. A prospective clinical evaluation of autogenous vein grafts used as a nerve conduit for distal sensory nerve defects of 3 cm or less. Plast Reconstr Surg. 1990;86(5):928–934. doi: 10.1097/00006534-199011000-00015.
  53. Meng WK, Huang Z, Tan Z, et al. [Vein nerve conduit supported by vascular stent in the regeneration of peripheral nerve in rabbits. (In Chinese).] Sichuan Da Xue Xue Bao Yi Xue Ban. 2017;48(5):687–692.
  54. Apfel SC. Neurotrophic factors in peripheral neuropathies: therapeutic implications. Brain Pathol. 1999;9(2):393–413. doi: 10.1111/j.1750-3639.1999.tb00234.x.
  55. Lee HC, Hsu YM, Tsai CC, et al. Improved peripheral nerve regeneration in streptozotocin-induced diabetic rats by oral lumbrokinase. Am J Chin Med. 2015;43(2):215–230. doi: 10.1142/S0192415X15500147.
  56. Stenberg L, Kodama A, Lindwall-Blom C, Dahlin LB. Nerve regeneration in chitosan conduits and in autologous nerve grafts in healthy and in type 2 diabetic Goto-Kakizaki rats. Eur J Neurosci. 2016;43(3):463–473. doi: 10.1111/ejn.13068.
  57. Angius D, Wang H, Spinner RJ, et al. A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds. Biomaterials. 2012;33(32):8034–8039. doi: 10.1016/j.biomaterials.2012.07.056.

Views

Abstract - 98

PDF (Russian) - 0

Cited-By


PlumX



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies