The Role of Redox Proteins in Arresting Proliferation of Breast Epithelial Cells Under Oxidative Stress

Cover Page


Cite item

Full Text

Abstract

Background: Redox status imbalance against the backdrop of oxidative stress development underlies the pathogenesis of a whole range of diseases. Many intracellular proteins contain free thiol groups and undergo redox regulation which is one of the key processes in controlling cell proliferation. Thioredoxin and glutaredoxin are involved in maintaining intracellular redox homeostasis and act as candidates in regulating proliferation. This provides prospects for future development of methods for diagnosis and targeted therapy of socially sensitive diseases accompanied by oxidative stress. The aim of the study is to reveal the role of redox proteins in molecular mechanisms of regulating HBL-100 breast epithelial cell proliferation under the effect of roscovitine, a cell cycle inhibitor. Materials and methods: Two research groups were formed. They included HBL-100 human breast epithelial cells incubated in the presence and absence of 20 mcM roscovitine for 18 hours. The intracellular thioredoxin levels were determined using Western blot analysis with specific monoclonal antibodies. Distribution of the cells among cell cycle phases were evaluated by flow cytometry. The activity of glutathione reductase, glutathione peroxidase, and thioredoxin reductase were measured by spectrophotometry. Results: Under the effect of roscovitine in the HBL-100 cells, cell cycle arrest in the G2/М phases occurred and oxidative stress developed. In the meantime, the decrease in the thioredoxin and glutaredoxin concentrations was registered along with the change in the functional activity of glutathione-dependent enzymes. Conclusions: Application of roscovitine, a cell cycle inhibitor, allowed creating a model of oxidative stress in the breast epithelial cells against the backdrop of inhibited cell proliferation. We identified that thioredoxin and glutaredoxin contributed to impairment of cell cycle progression. It points at a possibility to regulate cell proliferation by modulating the functional features of cellular redox-dependent proteins in different pathologies accompanied by oxidative stress.

About the authors

Evgeniya V. Shakhristova

Siberian state medical university

Author for correspondence.
Email: shaxristova@yandex.ru
ORCID iD: 0000-0003-2938-1137

Shakhristova Evgeniya Viktorovna - candidate of medical sciences, associate professor of the chair for biochemistry and molecular biology with the course of clinical laboratory diagnostics.

SPIN: 8125-6414

Researcher ID: F-9564-2015

Author ID: 42762264000

 

Россия

Elena A. Stepovaya

Siberian state medical university

Email: muir@mail.ru
ORCID iD: 0000-0001-9339-6304

Stepovaya Elena Alekseevna - doctor of medical sciences, professor of the chair for biochemistry and molecular biology with the course of clinical laboratory diagnostics.

SPIN: 5562-4522

Researcher ID: N-4039-2016

Author ID: 6603230755

Россия

Evgeniy V. Rudikov

Siberian state medical university

Email: korvin_w@mail.ru
ORCID iD: 0000-0003-3283-3616

Rudikov Evgeniy Valerevich - intern of the chair for biochemistry and molecular biology with the course of clinical laboratory diagnostics.

SPIN: 5559-4313

 

Россия

Olga S. Sushitskaya

Siberian state medical university

Email: sushitsckaya.olya@yandex.ru
ORCID iD: 0000-0003-0441-0325

Sushitskaya Olga Sergeevna - student of the 3d course of general medicine faculty.

SPIN: 2936-0198

Россия

Daria O. Rodionova

Siberian state medical university

Email: rod1onova.darya@yandex.ru
ORCID iD: 0000-0002-7568-6444

Rodionova Daria Olegovna - student of the 3d course of general medicine faculty.

SPIN:  5669-1967

Россия

Vaycheslav V. Novitsky

Siberian state medical university

Email: patfizssmu@yandex.ru
ORCID iD: 0000-0002-9577-8370

Novitsky Vaycheslav Viktorovich- academician of RAS, doctor of medical sciences, professor, professor of the chair for pathophysiology.

SPIN: 7160-6881

Researcher ID: M-8386-2016

Author ID: 7004689872

Россия

References

  1. Меньщикова Е.Б., Зенков Н.К., Ланкин В.З., и др. Окислительный стресс: патологические состояния и заболевания. — Новосибирск: АРТА; 2008. — 284 с.
  2. Butterfield DA, Dalle-Donne I. Redox proteomics: from protein modifications to cellular dysfunction and disease. Mass Spectrom Rev. 2014;33(1):1–6. doi: 10.1002/mas.21404.
  3. Klaunig JE, Wang Z. Oxidative stress in carcinogenesis. Curr Opin Toxicol. 2018;7:116–121. doi: 10.1016/j.cotox.2017.11.014.
  4. Зенков Н.К., Кожин П.М., Чечушков А.В., и др. Лабиринты регуляции Nrf2 // Биохимия. — 2017. — Т.82. — №5 — С. 749–759.
  5. Harris IS, Treloar AE, Inoue S, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 2015;27(2):211–222. doi: 10.1016/j.ccell.2014.11.019.
  6. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–990. doi: 10.1016/j.cellsig.2012.01.008.
  7. Halliwell B. Free radicals and antioxidants: updating a personal view. Nutr Rev. 2012;70(5):257–265. doi: 10.1111/j.1753-4887.2012.00476.x.
  8. Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75–87. doi: 10.1016/j.freeradbiomed.2013.07.036.
  9. Rajnai Z, Méhn D, Beéry E, et al. ATP-binding cassette B1 transports seliciclib (R-roscovitine), a cyclin-dependent kinase inhibitor. Drug Metab Dispos. 2010;38(11):2000–2006. doi: 10.1124/dmd.110.032805.
  10. Cappellini A, Chiarini F, Ognibene A, et al. The cyclin-dependent kinase inhibitor roscovitine and the nucleoside analog sangivamycininduce apoptosis in caspase-3 deficient breast cancer cells independent of caspase mediated P-glycoprotein cleavage: implications for therapy of drug resistant breast cancers. Cell Cycle. 2009;8(9):1421–1425. doi: 10.4161/cc.8.9.8323.
  11. Worthington DJ, Rosemeyer MA. Glutathione reductase from human erythrocytes. Catalytic properties and aggregation. Eur J Biochem. 1976;67(1):231–238. doi: 10.1111/j.1432-1033.1976.tb10654.x.
  12. Медицинские лабораторные технологии: руководство по клинической лабораторной диагностике: в 2 т. / В.В. Алесксеев и др.; под ред. А.И. Карпищенко. 3-е изд., перераб. и доп. — Т. 2. — М.: ГЭОТАР-Медиа; 2013. 792 с.
  13. Tamura T, Stadtman TC. A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci U S A. 1996;93(3):1006–1011. doi: 10.1073/pnas.93.3.1006.
  14. Шахристова Е.В., Степовая Е.А., Носарева О.Л., и др. Глутаредоксин и глутатион как молекулы-регуляторы пролиферации клеток эпителия молочной железы при индуцированном росковитином окислительном стрессе // Сибирский научный медицинский журнал. — 2017. — Т.37. — №5 — С. 5–10.
  15. Шахристова Е.В., Степовая Е.А., Носарева О.Л., и др. Глутатион и глутаредоксин в росковитин-опосредованном ингибировании пролиферации клеток аденокарциномы молочной железы // Вестник Российской академии медицинских наук. — 2017. — Т.72. — №4 — С. 261–267. doi: 10.15690/vramn849.
  16. Патент РФ на изобретение № 2017118700А/ 23.04.2018. Бюл. № 12. Шахристова Е.В., Степовая Е.А., Носарева О.Л., и др. Способ оценки степени окислительного стресса по содержанию карбонилированного тиоредоксина в клетках. Доступно по: https://patents.google.com/patent/RU2652336C1/ru. Ссылка активна на 12.02.2018.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies