MATERNAL NUTRITION AND THE PROBLEM OF INTRAUTERINE DISEASE PROGRAMMING IN CHILDREN

Cover Page


Cite item

Full Text

Abstract

Environmental conditions during perinatal development such as maternal undernutrition or overnutrition can program changes in the integration among physiological systems leading to cardio-metabolic diseases. This phenomenon can be understood in the context of the phenotypic plasticity and refers to the adjustment of a phenotype in response to environmental input without genetic change. Experimental studies indicate that fetal exposure to an adverse maternal environment may alter the morphology and physiology that contribute to the development of cardio-metabolic diseases. The significance and role of genetic polymorphism, markers of chronic inflammation, oxidative stress, endothelial dysfunction, leptin synthesis disruption, rennin-angiotensin system in intrauterine cardio-metabolic disease programming are discussed. The study demonstrated that both maternal protein restriction and overnutrition alter the central and peripheral control of arterial pressure and metabolism. Breastfeeding may have beneficial effect on obesity risk later in life in genetically predisposed groups. Understanding the mechanisms which affect health outcomes in the offspring influenced by the macronutrient composition of the maternal diet during pregnancy or lactation may lead to new maternal nutrition recommendations, disease prevention strategies, and therapies that reduce the increasing incidence of cardio-metabolic diseases in children and adults.

About the authors

O. P. Kovtun

Ural State Medical University Russian Ministry of Public Health

Author for correspondence.
Email: kovtun@usma.ru
ORCID iD: 0000-0002-4462-4179

Olga P. Kovtun - MD, PhD, professor.

Yekaterinburg


Russian Federation

P. B. Tsyvian

Ural State Medical University Russian Ministry of Public Health; Mother and Child Care Research Institute Russian Ministry of Public Health

Email: pavel.tsyvian@gmail.com
ORCID iD: 0000-0002-8186-6329

Pavel B. Tsyvian - MD, PhD, professor.

Yekaterinburg

Russian Federation

References

  1. Баланова Ю.А., Концевая А.В., Шальнова С.А., и др. Распространенность поведенческих факторов риска сердечно-сосудистых заболеваний в российской популяции по результатам исследования ЭССЕ-РФ // Профилактическая медицина. ― 2014. ― Т.17. ― №5 ― С. 42–52.
  2. Townsend N, Wilson L, Bhatnagar P, et al. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J. 2016;37(42):3232–3245. doi: 10.1093/eurheartj/ehw334.
  3. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–781. doi: 10.1016/s0140-6736(14)60460-8.
  4. Victora CG, Adair L, Fall C, et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet. 2008;371(9609):340–357. doi: 10.1016/s0140-6736(07)61692-4.
  5. Koletzko B, Brands B, Poston L, et al. Early nutrition programming of long-term health. Proc Nutr Soc. 2012;71(3):371–378. doi: 10.1017/s0029665112000596.
  6. Osmond C, Barker DJP. Fetal, Infant, and Childhood Growth Are Predictors of Coronary Heart Disease, Diabetes, and Hypertension in Adult Men and Women. Environ Health Perspect. 2000;108(s3):545–553. doi: 10.1289/ehp.00108s3545.
  7. West-Eberhard MJ. Developmental plasticity and the origin of species differences. Proc Natl Acad Sci U S A. 2005;102(Suppl 1):6543–6549. doi: 10.1073/pnas.0501844102.
  8. Conde WL, Monteiro CA. Nutrition transition and double burden of undernutrition and excess of weight in Brazil. Am J Clin Nutr. 2014;100(6):1617S–1622S. doi: 10.3945/ajcn.114.084764.
  9. Barker D. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;327(8489):1077–1081. doi: 10.1016/s0140-6736(86)91340-1.
  10. Barker DJP, Godfrey KM, Gluckman PD, et al. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341(8850):938–941. doi: 10.1016/0140-6736(93)91224-a.
  11. Barker DJP, Osmond C, Forsen TJ, et al. Maternal and social origins of hypertension. Hypertension. 2007;50(3):565–571. doi: 10.1161/hypertensionaha.107.091512.
  12. Hales CN, Barker DJP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35(7):595–601. doi: 10.1007/bf00400248.
  13. Ozanne SE, Alfaradhi MZ. Developmental programming in response to maternal overnutrition. Front Genet. 2011;2:27−33. doi: 10.3389/fgene.2011.00027.
  14. Chavatte-Palmer P, Tarrade A, Rousseau-Ralliard D. Diet before and during pregnancy and offspring health: the importance of animal models and what can be learned from them. Int J Environ Res Public Health. 2016;13(6):586−594. doi: 10.3390/ijerph13060586.
  15. Wells JCK. The thrifty phenotype: an adaptation in growth or metabolism? Am J Hum Biol. 2011;23(1):65–75. doi: 10.1002/ajhb.21100.
  16. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr. 2007;27(1):363–388. doi: 10.1146/annurev.nutr.27.061406.093705.
  17. Mitchell C, Schneper LM, Notterman DA. DNA methylation, early life environment and health outcomes. Pediatr Res. 2015;79(1–2):212–219. doi: 10.1038/pr.2015.193.
  18. Mazzio EA, Soliman KF. Epigenetics and nutritional environmental signals. Integr Comp Biol. 2014;54(1):21–30. doi: 10.1093/icb/icu049.
  19. vel Szic KS, Declerck K, Vidaković M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics. 2015;7(1). doi: 10.1186/s13148-015-0068-2.
  20. Fiorito G, Guarrera S, Valle C, et al. B-vitamins intake, DNA-methylation of One Carbon Metabolism and homocysteine pathway genes and myocardial infarction risk: The EPICOR study. Nutr Metab Cardiovasc Dis. 2014;24(5):483–488. doi: 10.1016/j.numecd.2013.10.026.
  21. Karlic H, Varga F. Impact of vitamin D metabolism on clinical epigenetics. Clin Epigenetics. 2011;2(1):55–61. doi: 10.1007/s13148-011-0021-y.
  22. Lomba A, Martínez JA, García-Díaz DF, et al. Weight gain induced by an isocaloric pair-fed high fat diet: a nutriepigenetic study on FASN and NDUFB6 gene promoters. Mol Genet Metab. 2010;101(2–3):273–278. doi: 10.1016/j.ymgme.2010.07.017.
  23. Lillycrop KA, Burdge GC. Epigenetic changes in early life and future risk of obesity. Int J Obes. 2010;35(1):72–83. doi: 10.1038/ijo.2010.122.
  24. Yajnik C. Interactions of perturbations in intrauterine growth and growth during childhood on the risk of adult-onset disease. Proc Nutr Soc. 2008;59(02):257–265. doi: 10.1017/s0029665100000288.
  25. Hales CN, Barker DJP. The thrifty phenotype hypothesis. Br Med Bull. 2001;60(1):5–20. doi: 10.1093/bmb/60.1.5.
  26. Tsyvian PB, Markova TV, Mikhailova SV, et al. Left ventricular isovolumic relaxation and renin-angiotensin system in the growth restricted fetus. Europ J Obstet Gyn Reprod Biol. 2008;140(1):33–37. doi: 10.1016/j.ejogrb.2008.02.005.
  27. Nuyt AM, Alexander BT. Developmental programming and hypertension. Curr Opin Nephrol Hypertens. 2009;18(2):144–152. doi: 10.1097/MNH.0b013e328326092c.
  28. Sawaya AL, Martins PA, Grillo LP, Florencio TT. Long-term effects of early malnutrition on body weight regulation. Nutr Rev. 2004;62:S127–S133. doi: 10.1111/j.1753-4887.2004.tb00082.x.
  29. Ozanne SE, Hales CN. Catch-up growth and obesity in male mice. Nature. 2004;427(6973):411–412. doi: 10.1038/427411b.
  30. Barros MAV, De Brito Alves JL, Nogueira VO, et al. Maternal low-protein diet induces changes in the cardiovascular autonomic modulation in male rat offspring. Nutr Metab Cardiovasc Dis. 2015;25(1):123–130. doi: 10.1016/j.numecd.2014.07.011.
  31. Fidalgo M, Falcão-Tebas F, Bento-Santos A, et al. Programmed changes in the adult rat offspring caused by maternal protein restriction during gestation and lactation are attenuated by maternal moderate–low physical training. Br J Nutr. 2012;109(03):449–456. doi: 10.1017/s0007114512001316.
  32. Paulino-Silva KM, Costa-Silva JH. Hypertension in rat offspring subjected to perinatal protein malnutrition is not related to the baroreflex dysfunction. Clin Exp Pharmacol Physiol. 2016;43(11):1046–1053. doi: 10.1111/1440-1681.12628.
  33. Zohdi V, Lim K, Pearson J, Black M. Developmental programming of cardiovascular disease following intrauterine growth restriction: findings utilising a rat model of maternal protein restriction. Nutrients. 2014;7(1):119–152. doi: 10.3390/nu7010119.
  34. Wells JCK. The programming effects of early growth. Early Hum Dev. 2007;83(12):743–748. doi: 10.1016/j.earlhumdev.2007.09.002.
  35. Wang J, Cao M, Zhuo Y, et al. Catch-up growth following food restriction exacerbates adulthood glucose intolerance in pigs exposed to intrauterine undernutrition. Nutrition. 2016;32(11–12):1275–1284. doi: 10.1016/j.nut.2016.03.010.
  36. Tarry-Adkins JL, Fernandez-Twinn DS, Hargreaves IP, et al. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth. Am J Clin Nutr. 2016;103(2):579–588. doi: 10.3945/ajcn.115.119834.
  37. Brawley L, Itoh S, Torrens C, et al. Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr Res. 2003;54(1):83–90. doi: 10.1203/01.pdr.0000065731.00639.02.
  38. Franco MC, Casarini DE, Carneiro-Ramos MS, et al. Circulating renin–angiotensin system and catecholamines in childhood: is there a role for birthweight? Clin Sci. 2008;114(5):375–380. doi: 10.1042/cs20070284.
  39. Siddique K, Guzman GL, Gattineni J, Baum M. . Effect of postnatal maternal protein intake on prenatal programming of hypertension. Reprod Sci. 2014;21(12):1499–1507. doi: 10.1177/1933719114530186.
  40. Chen J-H, Tarry-Adkins Jane L, Matharu K, et al. Maternal protein restriction affects gene expression profiles in the kidney at weaning with implications for the regulation of renal function and lifespan. Clin Sci. 2010;119(9):373–387. doi: 10.1042/cs20100230.
  41. Costa-Silva JH, de Brito-Alves JL, Barros MA, et al. New insights on the maternal diet induced-hypertension: potential role of the phenotypic plasticity and sympathetic-respiratory overactivity. Front Physiol. 2015;6:345−350. doi: 10.3389/fphys.2015.00345.
  42. Prabhakar NR. Sensing hypoxia: physiology, genetics and epigenetics. J Physiol. 2013;591(9):2245–2257. doi: 10.1113/jphysiol.2012.247759.
  43. Nanduri J, Prabhakar NR. Epigenetic regulation of carotid body oxygen sensing: clinical implications. Adv Exp Med Biol. 2015;860:1–8. doi: 10.1007/978-3-319-18440-1_1.
  44. Essick EE, Sam F. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid Med Cell Longev. 2010;3(3):168–177. doi: 10.4161/oxim.3.3.12106.
  45. Ferreira DJS, da Silva Pedroza AA, Braz GRF, et al. Mitochondrial bioenergetics and oxidative status disruption in brainstem of weaned rats: Immediate response to maternal protein restriction. Brain Res. 2016;1642:553–561. doi: 10.1016/j.brainres.2016.04.049.
  46. Nascimento L, Freitas CM, Silva-Filho R, et al. The effect of maternal low-protein diet on the heart of adult offspring: role of mitochondria and oxidative stress. Appl Physiol Nutr Metab. 2014;39(8):880–887. doi: 10.1139/apnm-2013-0452.
  47. Toyoshima Y, Tokita R, Ohne Y, et al. Dietary protein deprivation upregulates insulin signaling and inhibits gluconeogenesis in rat liver. J Mol Endocrinol. 2010;45(5):329–340. doi: 10.1677/jme-10-0102.
  48. Ribeiro AM, Lima C, de Lira PI. Baixo peso ao nascer e obesidade: associação causal ou casual? Rev Pediatr. 2015;33(3):340–348. doi: 10.1016/j.rpped.2014.09.007.
  49. Wensveen FM, Jelenčić V, Valentić S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16(4):376–385. doi: 10.1038/ni.3120.
  50. Lyons CL, Kennedy EB, Roche HM. Metabolic inflammation-differential modulation by dietary constituents. Nutrients. 2016;8(5):e247−e249. doi: 10.3390/nu8050247.
  51. Gruber L, Hemmerling J, Schüppel V, et al. Maternal high-fat diet accelerates development of crohn’s disease-like ileitis in TNFDeltaARE/WT offspring. Inflamm Bowel Dis. 2015;21:2016–2025. doi: 10.1097/MIB.0000000000000465.
  52. Roberts VHJ, Frias AE, Grove KL. Impact of maternal obesity on fetal programming of cardiovascular disease. Physiology (Bethesda). 2015;30:224–231. doi: 10.1152/physiol.00021.2014.
  53. Harlan SM, Rahmouni K. Neuroanatomical determinants of the sympathetic nerve responses evoked by leptin. Clin Auton Res. 2012;23(1):1–7. doi: 10.1007/s10286-012-0168-4.
  54. Harlan Shannon M, Guo D-F, Morgan Donald A, et al. Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab. 2013;17(4):599–606. doi: 10.1016/j.cmet.2013.02.017.
  55. Chaar LJ, Coelho A, Silva NM, et al. High-fat diet-induced hypertension and autonomic imbalance are associated with an upregulation of CART in the dorsomedial hypothalamus of mice. Physiol Rep. 2016;4(11):e12811. doi: 10.14814/phy2.12811.
  56. Bassi M, Giusti H, Leite CM, et al. Central leptin replacement enhances chemorespiratory responses in leptin-deficient mice independent of changes in body weight. Pflugers Arch. 2012;464(2):145–153. doi: 10.1007/s00424-012-1111-1.
  57. Taylor PD, McConnell J, Khan IY, et al. Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R134–R139. doi: 10.1152/ajpregu.00355.2004.
  58. Wang J, Ma H, Tong C, et al. Overnutrition and maternal obesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart. FASEB J. 2010;24(6):2066–2076. doi: 10.1096/fj.09-142315.
  59. Blackmore HL, Niu Y, Fernandez-Twinn DS, et al. Maternal diet-induced obesity programs cardiovascular dysfunction in adult male mouse offspring independent of current body weight. Endocrinology. 2014;155(10):3970–3980. doi: 10.1210/en.2014-1383.
  60. Tsyvian PB, Bashmakova NV, Kovtun OP, et al. Maternal and newborn infants amino acid concentrations in obese women born themselves with normal and small for gestational age birth weight. J Dev Orig Health Dis. 2015;6(4):278–284. doi: 10.1017/s2040174415001117.
  61. Maloyan A, Muralimanoharan S, Huffman S, et al. Identification and comparative analyses of myocardial miRNAs involved in the fetal response to maternal obesity. Physiol Genomics. 2013;45(19):889–900. doi: 10.1152/physiolgenomics.00050.2013.
  62. Wing-Lun E, Eaton SA, Hur SSJ, et al. Nutrition has a pervasive impact on cardiac microRNA expression in isogenic mice. Epigenetics. 2016;11(7):475–481. doi: 10.1080/15592294.2016.1190895.
  63. Fan L, Lindsley SR, Comstock SM, et al. Maternal high-fat diet impacts endothelial function in nonhuman primate offspring. Int J Obes. 2012;37(2):254–262. doi: 10.1038/ijo.2012.42.
  64. Sullivan EL, Rivera HM, True CA, et al. Maternal and postnatal high-fat diet consumption programs energy balance and hypothalamic melanocortin signaling in nonhuman primate offspring. Am J Physiol Regul Integr Comp Physiol. 2017;313(2):R169–R179. doi: 10.1152/ajpregu.00309.2016.
  65. Fernandez-Twinn DS, Blackmore HL, Siggens L, et al. The programming of cardiac hypertrophy in the offspring by maternal obesity is associated with hyperinsulinemia, AKT, ERK, and mTOR activation. Endocrinology. 2012;153(12):5961–5971. doi: 10.1210/en.2012-1508.
  66. Loche E, Blackmore HL, Carpenter AA, et al. Maternal diet-induced obesity programmes cardiac dysfunction in male mice independently of post-weaning diet. Cardiovasc Res. 2018;56:243−252. doi: 10.1093/cvr/cvy082.
  67. Liotto N, Miozzo M, Gianni ML, et al. Early nutrition: the role of genetics and epigenetics. Pediatr Med Chir. 2009;31(2):65–71.
  68. Verduci E, Banderali G, Barberi S, et al. Epigenetic effects of human breast milk. Nutrients. 2014;6(4):1711–1724. doi: 10.3390/nu6041711.
  69. Barker DJP. Developmental origins of chronic disease. Public Health. 2012;126(3):185–189. doi: 10.1016/j.puhe.2011.11.014.
  70. Samarina O, Kovtun O, Chuykov A, et al. Association of aldosterone synthase (CYP11B2) gene polymorphisms with obesity in essential hypertensive children and adolescents from the Urals. J Hypertens. 2016;34:e317. doi: 10.1097/01.hjh.0000500779.78710.28.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies