МЕХАНИЗМЫ ИММУНОЛОГИЧЕСКОГО УСКОЛЬЗАНИЯ ВИРУСА ГЕПАТИТА В

Обложка


Цитировать

Полный текст

Аннотация

Высокая распространенность вируса гепатита В (HBV) среди населения во многом обусловлена многочисленными механизмами, сформированными в ходе эволюции этого вируса, способствующими его выживанию в условиях иммунологического прессинга. В обзоре представлены наиболее полная систематизация и классификация разнообразных защитных механизмов HBV с точки зрения их воздействия на различные звенья врожденного и адаптивного иммунного ответа. Анализ литературных данных позволяет сделать заключение, что в основе всех этих механизмов заложено два базовых принципа ― стратегия «вируса-невидимки» (уход вируса от распознавания иммунной системой) и стратегия иммуносупрессии. Тип взаимодействия вируса с иммунной системой, называемый стратегией «вируса-невидимки», осуществляется следующими способами: особая стратегия репликации HBV, препятствующая распознаванию рецепторами системы врожденного иммунитета, — появление мутантов вакцинального ускользания; изоляция вируса в клетках и тканях организма-хозяина, обеспечивающая его недоступность для Т-клеток, а также гиперпродукция субвирусных частиц в качестве ловушек для специфичных антител. Базовый принцип стратегии иммуносупрессии, реализуемый в случае HBV, основан, по мнению авторов, преимущественно на явлении вирусной апоптотической мимикрии. Результатом данной стратегии взаимодействия являются дисфункция NK- и NKT-клеток, инактивация функций дендритных клеток и угнетение системы адаптивного иммунного ответа. В обзоре показано, что взаимодействие между HBV и иммунной системой макроорганизма находится в некоем «динамическом равновесии», зависящем от разнообразных факторов. Описаны конкретные молекулярные мишени вирусного воздействия. Предлагается расширить исследования о влиянии генетических факторов хозяина на развитие врожденного и адаптивного иммунного ответа против HBV, особенно при изучении реального инфекционного процесса, что позволит усовершенствовать подходы к терапии гепатита В в направлении разработки методов персонализированной медицины.

Об авторах

Марина Владимировна Соколова

Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи

Email: sokolova_mariya_gamaleya@mail.ru
ORCID iD: 0000-0002-2836-8232

Аспирант, младший научный сотрудник лаборатории медиаторов и эффекторов иммунитета отдела иммунологиию

123098, Москва, ул. Гамалеи, д. 18, тел.: +7 (499) 193-61-31, SPIN-код: 8100-0056

Россия

Мария Вениаминовна Коноплева

Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи

Email: maria-konopleva@rambler.ru
ORCID iD: 0000-0002-9724-695X

Кандидат биологических наук, старший научный сотрудник лаборатории медиаторов и эффекторов иммунитета отдела иммунологии.

123098, Москва, ул. Гамалеи, д. 18, тел.: +7 (499) 193-61-31, SPIN-код: 9680-6301

Россия

Татьяна Анатольевна Семененко

Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи

Email: semenenko@gamaleya.org
ORCID iD: 0000-0002-6686-9011

Доктор медицинских наук, профессор, главный научный сотрудник, руководитель лаборатории неспецифической профилактики инфекционных заболеваний, руководитель отдела эпидемиологии.

123098, Москва, ул. Гамалеи, д. 18, тел.: +7 (499) 190-72-56, SPIN-код: 8375-2270

Василий Геннадьевич Акимкин

Центральный научно-исследовательский институт эпидемиологии Роспотребнадзора

Email: vgakimkin@yandex.ru
ORCID iD: 0000-0001-8139-0247

Доктор медицинских наук, профессор, академик РАН, заместитель директора по эпидемиологии.

111123, Москва, ул. Новогиреевская, д. 3а, тел.: +7 (495) 672-10-69, SPIN-код: 4038-7455

Россия

Алексей Викторович Тутельян

Центральный научно-исследовательский институт эпидемиологии Роспотребнадзора

Автор, ответственный за переписку.
Email: willothewisp@yandex.ru
ORCID iD: 0000-0002-2706-6689

Доктор медицинских наук, профессор, член-корреспондент РАН, заведующий лабораторией инфекций, связанных с оказанием медицинской помощи.

111123, Москва, ул. Новогиреевская, д. 3а, тел.: +7 (495) 672-10-69, SPIN-код: 8150-2230

Россия

Анатолий Петрович Суслов

Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи

Email: suslov.anatoly@gmail.com
ORCID iD: 0000-0001-5731-3284

Доктор медицинских наук, профессор, ведущий научный сотрудник, руководитель лаборатории медиаторов и эффекторов иммунитета отдела иммунологии.

123098, Москва, ул. Гамалеи, д. 18, тел.: +7 (499) 193-61-31, eLibrary Author ID: 251813 Россия

Список литературы

  1. Han QJ, Zhang C, Zhang J, Tian ZG. The role of innate immunity in HBV infection. Semin Immunopathol. 2013;35(1):23–38. doi: 10.1007/s00281-012-0331-y.
  2. Wieland SF, Chisari FV. Stealth and cunning: hepatitis B and hepatitis C viruses. J Virol. 2005;79(15):9369–9380. doi: 10.1128/Jvi.79.15.9369-9380.2005.
  3. Morikawa K, Shimazaki T, Takeda R, et al. Hepatitis B: progress in understanding chronicity, the innate immune response, and cccDNA protection. Ann Transl Med. 2016;4(18):337. doi: 10.21037/atm.2016.08.54.
  4. Wieland SF, Vega RG, Muller R, et al. Searching for interferon-induced genes that inhibit hepatitis B virus replication in transgenic mouse hepatocytes. J Virol. 2003;77(2):1227–1236. doi: 10.1128/Jvi.77.2.1227-1236.2003.
  5. Yu SY, Chen J, Wu M, et al. Hepatitis B virus polymerase inhibits RIG-I- and Toll-like receptor 3-mediated beta interferon induction in human hepatocytes through interference with interferon regulatory factor 3 activation and dampening of the interaction between TBK1/IKK epsilon and DDX3. J Gen Virol. 2010;91(Pt 8):2080–2090. doi: 10.1099/vir.0.020552-0.
  6. Liu YH, Li JH, Chen JL, et al. Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways. J Virol. 2015;89(4):2287–2300. doi: 10.1128/Jvi.02760-14.
  7. Wei CW, Ni CF, Song T, et al. The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein. J Immunol. 2010;185(2):1158–1168. doi: 10.4049/jimmunol.0903874.
  8. Kumar M, Jung SY, Hodgson AJ, et al. Hepatitis B virus regulatory HBx protein binds to adaptor protein IPS-1 and inhibits the activation of beta interferon. J Virol. 2011;85(2):987–995. doi: 10.1128/Jvi.01825-10.
  9. Decorsière A, Mueller H, van Breugel PC, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature. 2016;531(7594):386–380. doi: 10.1038/nature17170.
  10. Sato S, Li K, Kameyama T, et al. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity. 2015;42(1):123–132. doi: 10.1016/j.immuni.2014.12.016.
  11. Lu HL, Liao F. Melanoma differentiation-associated gene 5 senses hepatitis B virus and activates innate immune signaling to suppress virus replication. J Immunol. 2013;191(6):3264–3276. doi: 10.4049/jimmunol.1300512.
  12. Ebert G, Poeck H, Lucifora J, et al. 5’ Triphosphorylated small interfering RNAs control replication of hepatitis B virus and induce an interferon response in human liver cells and mice. Gastroenterology. 2011;141(2):696–706.e1-3. doi: 10.1053/j.gastro.2011.05.001.
  13. Chen M, Sallberg M, Hughes J, et al. Immune tolerance split between hepatitis B virus precore and core proteins. J Virol. 2005;79(5):3016–3027. doi: 10.1128/JVI.79.5.3016-3027.2005.
  14. Wang FS, Zhang Z. Host immunity influences disease progression and antiviral efficacy in humans infected with hepatitis B virus. Expert Rev Gastroenterol Hepatol. 2009;3(5):499–512. doi: 10.1586/egh.09.50.
  15. Li J, Han YP, Liu B, et al. [Dynamic changes and clinical significance of HBcAg18-27 specific cytotoxic T lymphocytes in acute hepatitis B patients. (In Chinese).] Zhonghua Gan Zang Bing Za Zhi. 2011;19(1):38–43. doi: 10.3760/cma.j.issn.1007-3418.2011.01.011.
  16. Peppa D, Micco L, Javaid A, et al. Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS Pathog. 2010;6(12):e1001227. doi: 10.1371/journal.ppat.1001227.
  17. Tjwa ET, van Oord GW, Hegmans JP, et al. Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B. J Hepatol. 2011;54(2):209–218. doi: 10.1016/j.jhep.2010.07.009.
  18. Ju Y, Hou N, Meng J, et al. T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B. J Hepatol. 2010;52(3):322–329. doi: 10.1016/j.jhep.2009.12.005.
  19. Tang KF, Chen M, Xie J, et al. Inhibition of hepatitis B virus replication by small interference RNA induces expression of MICA in HepG2.2.15 cells. Med Microbiol Immunol. 2009;198(1):27–32. doi: 10.1007/s00430-008-0101-6.
  20. Shi CC, Tjwa ET, Biesta PJ, et al. Hepatitis B virus suppresses the functional interaction between natural killer cells and plasmacytoid dendritic cells. J Viral Hepat. 2012;19(2):E26–E33. doi: 10.1111/j.1365-2893.2011.01496.x.
  21. Woltman AM, Op den Brouw ML, Biesta PJ, et al. Hepatitis B virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function. PLoS One. 2011;6(1):e15324. doi: 10.1371/journal.pone.0015324.
  22. Hasebe A, Akbar SM, Furukawa S, et al. Impaired functional capacities of liver dendritic cells from murine hepatitis B virus (HBV) carriers: relevance to low HBV-specific immune responses. Clin Exp Immunol. 2005;139(1):35–42. doi: 10.1111/j.1365-2249.2004.02676.x.
  23. Zhang Z, Chen DW, Yao JX, et al. Increased infiltration of intrahepatic DC subsets closely correlate with viral control and liver injury in immune active pediatric patients with chronic hepatitis B. Clin Immunol. 2007;122(2):173–180. doi: 10.1016/j.clim.2006.09.006.
  24. Fenner JE, Starr R, Cornish AL, et al. Suppressor of cytokine signaling 1 regulates the immune response to infection by a unique inhibition of type I interferon activity. Nat Immunol. 2006;7(1):33–39. doi: 10.1038/ni1287.
  25. Xu Y, Hu Y, Shi B, et al. HBsAg inhibits TLR9-mediated activation and IFN-alpha production in plasmacytoid dendritic cells. Mol Immunol. 2009;46(13):2640–2646. doi: 10.1016/j.molimm.2009.04.031.
  26. Vanlandschoot P, Leroux-Roels G. Viral apoptotic mimicry: an immune evasion strategy developed by the hepatitis B virus? Trends Immunol. 2003;24(3):144–147. doi: 10.1016/S1471-4906(03)00026-7.
  27. den Brouw ML, Binda RS, van Roosmalen MH, et al. Hepatitis B virus surface antigen impairs myeloid dendritic cell function: a possible immune escape mechanism of hepatitis B virus. Immunology. 2009;126(2):280–289. doi: 10.1111/j.1365-2567.2008.02896.x.
  28. Lohr HF, Pingel S, Bochner WO, et al. Reduced virus specific T helper cell induction by autologous dendritic cells in patients with chronic hepatitis B - restoration by exogenous interleukin-12. Clin Exp Immunol. 2002;130(1):107–114. doi: 10.1046/j.1365-2249.2002.01943.x.
  29. Penna A, DelPrete G, Cavalli A, et al. Predominant T-Helper 1 cytokine profile of hepatitis B virus nucleocapsid-specific T cells in acute self-limited hepatitis B. Hepatology. 1997;25(4):1022–1027. doi: 10.1002/hep.510250438.
  30. Guidotti LG, Rochford R, Chung J, et al. Viral clearance without destruction of infected cells during acute HBV infection. Science. 1999;284(5415):825–829. doi: 10.1126/science.284.5415.825.
  31. Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol. 2001;19:65–91. doi: 10.1146/annurev.immunol.19.1.65.
  32. Bertoletti A, Ferrari C. Adaptive immunity in HBV infection. J Hepatol. 2016;64(1 Suppl):S71–S83. doi: 10.1016/j.jhep.2016.01.026.
  33. Семененко Т.А. Иммунный ответ при вакцинации против гепатита В у лиц с иммунодефицитными состояниями // Эпидемиология и вакцинопрофилактика. ― 2011. ― №1 ― С. 51–58. [Semenenko TA. Immune response after vaccination against hepatitis B in patients with immunodeficiency. Epidemiol Vakcinoprofil. 2011;(1):51−58. (In Russ).]
  34. Zhu XL, Du T, Li JH, et al. Association of HLA-DQB1 gene polymorphisms with outcomes of HBV infection in Chinese Han population. Swiss Med Wkly. 2007;137(7–8):114–120. doi: 2007/07/smw-11428.
  35. Rosic I, Malicevic S, Medic S. [The significance of age and sex for the absence of immune response to hepatitis B vaccination. (In Serbian).] Srp Arh Celok Lek. 2008;136(1–2):33–37.
  36. Ni Y, Lempp FA, Mehrle S, et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology. 2014;146(4):1070–1083. doi: 10.1053/j.gastro.2013.12.024.
  37. Le Seyec J, Chouteau P, Cannie I, et al. Role of the pre-S2 domain of the large envelope protein in hepatitis B virus assembly and infectivity. J Virol. 1998;72(7):5573–5578.
  38. Werner JM, Abdalla A, Gara N, et al. The hepatitis B vaccine protects re-exposed health care workers, but does not provide sterilizing immunity. Gastroenterology. 2013;145(5):1026–1034. doi: 10.1053/j.gastro.2013.07.044.
  39. Rybczynska J, Campbell K, Kamili S, et al. CD4+ T cells are not required for suppression of hepatitis B virus replication in the liver of vaccinated chimpanzee. J Infect Dis. 2016;213(1):49–56. doi: 10.1093/infdis/jiv348.
  40. Waters JA, Kennedy M, Voet P, et al. Loss of the common a determinant of hepatitis-B surface-antigen by a vaccine-induced escape mutant. J Clin Invest. 1992;90(6):2543–2547. doi: 10.1172/Jci116148.
  41. Carman WF, Zanetti AR, Karayiannis P, et al. Vaccine-induced escape mutant of hepatitis-B virus. Lancet. 1990;336(8711):325-329. doi: 10.1016/0140-6736(90)91874-A.
  42. Weber B. Genetic variability of the S gene of hepatitis B virus: clinical and diagnostic impact. J Clin Virol. 2005;32(2):102–112. doi: 10.1016/j.jcv.2004.10.008.
  43. Carman WF, Trautwein C, van Deursen FJ, et al. Hepatitis B virus envelope variation after transplantation with and without hepatitis B immune globulin prophylaxis. Hepatology. 1996;24(3):489–493. doi: 10.1053/jhep.1996.v24.pm0008781312.
  44. Weinberger KM, Bauer T, Bohm S, Jilg WG. High genetic variability of the group-specific a-determinant of hepatitis B virus surface antigen (HBsAg) and the corresponding fragment of the viral polymerase in chronic virus carriers lacking detectable HBsAg in serum. J Gen Virol. 2000;81(Pt 5):1165–1174. doi: 10.1099/0022-1317-81-5-1165.
  45. Chang MH. Breakthrough HBV infection in vaccinated children in Taiwan: surveillance for HBV mutants. Antivir Ther. 2010;15(3):463–469. doi: 10.3851/Imp1555.
  46. Oon CJ, Lim GK, Ye Z, et al. Molecular epidemiology of hepatitis-B virus-vaccine variants in Singapore. Vaccine. 1995;13(8):699–702. doi: 10.1016/0264-410x(94)00080-7.
  47. Баженов А.И., Коноплева М.В., Эльгорт Д.А., и др. Алгоритм серологического поиска и оценка распространенности серологически значимых HBsAg-мутаций у хронических носителей вируса гепатита В // Журнал микробиологии, эпидемиологии и иммунобиологии. ― 2007. ― №6 ― С. 30–37. [Bazhenov AI, Konopleva MV, Elgort DA, et al. Algorithm of serologic screening and assessment of prevalence of serologically meaningful mutations of HBsAg in hepatitis B virus carriers. Zh Mikrobiol Epidemiol Immunobiol. 2007;(6):30−37. (In Russ).]
  48. Francois G, Kew M, Van Damme P, et al. Mutant hepatitis B viruses: a matter of academic interest only or a problem with far-reaching implications? Vaccine. 2001;19(28–29):3799–3815. doi: 10.1016/S0264-410x(01)00108-6.
  49. Kalinina T, Riu A, Fischer L, et al. A dominant hepatitis B virus population defective in virus secretion because of several S-gene mutations from a patient with fulminant hepatitis. Hepatology. 2001;34(2):385–394. doi: 10.1053/jhep.2001.26516.
  50. Feitelson MA. Biology of hepatitis-B virus variants. Lab Invest. 1994;71(3):324–349.
  51. Melegari M, Bruno S, Wands JR. Properties of hepatitis-B virus pre-S1 deletion mutants. Virology. 1994;199(2):292–300. doi: 10.1006/viro.1994.1127.
  52. Rosenberg W. Mechanisms of immune escape in viral hepatitis. Gut. 1999;44(5):759–764. doi: 10.1136/gut.44.5.759.
  53. Coffin CS, Osiowy C, Gao S, et al. Hepatitis B virus (HBV) variants fluctuate in paired plasma and peripheral blood mononuclear cells among patient cohorts during different chronic hepatitis B (CHB) disease phases. J Viral Hepat. 2015;22(4):416–426. doi: 10.1111/jvh.12308.
  54. Datta S, Panigrahi R, Biswas A, et al. Genetic characterization of hepatitis B virus in peripheral blood leukocytes: evidence for selection and compartmentalization of viral variants with the immune escape G145R mutation. J Virol. 2009;83(19):9983–9992. doi: 10.1128/Jvi.01905-08.
  55. Bai GQ, Li SH, Yue YF, Shi L. The study on role of peripheral blood mononuclear cell in HBV intrauterine infection. Arch Gynecol Obstet. 2011;283(2):317–321. doi: 10.1007/s00404-010-1366-8.
  56. Shao QL, Zhao XX, Li MD. Role of peripheral blood mononuclear cell transportation from mother to baby in HBV intrauterine infection. Arch Gynecol Obstet. 2013;288(6):1257–1261. doi: 10.1007/s00404-013-2893-x.
  57. Schmidt J, Blum HE, Thimme R. T-cell responses in hepatitis B and C virus infection: similarities and differences. Emerg Microbes Infect. 2013;2(3):e15. doi: 10.1038/emi.2013.14.
  58. Hofmann M, Thimme R. Kill, control, or escape: Immune responses in viral hepatitis. Clin Liver Dis (Hoboken). 2016;8(3):79–82. doi: 10.1002/cld.576.
  59. Guidotti LG, Isogawa M, Chisari FV. Host-virus interactions in hepatitis B virus infection. Curr Opin Immunol. 2015;36:61–66. doi: 10.1016/j.coi.2015.06.016.
  60. Chen LG, Zhang Z, Chen WW, et al. B7-H1 up-regulation on myeloid dendritic cells significantly suppresses T cell immune function in patients with chronic hepatitis B. J Immunol. 2007;178(10):6634–6641. doi: 10.4049/jimmunol.178.10.6634.
  61. Dong HD, Chen XM. Immunoregulatory role of B7-H1 in chronicity of inflammatory responses. Cell Mol Immunol. 2006;3(3):179–187.
  62. Maier H, Isogawa M, Freeman GJ, Chisari FV. PD-1: PD-L1 interactions contribute to the functional suppression of virus-specific CD8(+) T lymphocytes in the liver. J Immunol. 2007;178(5):2714–2720. doi: 10.4049/jimmunol.178.5.2714.
  63. Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–3175. doi: 10.1200/Jco.2009.26.7609.
  64. Shoukry NH, Nebbia G, Peppa D, et al. Upregulation of the Tim-3/Galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PLoS One. 2012;7(10):e47648. doi: 10.1371/journal.pone.0047648.
  65. You Q, Cheng LL, Kedl RM, Ju C. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology. 2008;48(3):978–990. doi: 10.1002/hep.22395.
  66. Miyazoe S, Hamasaki K, Nakata K, et al. Influence of interleukin-10 gene promoter polymorphisms on disease progression in patients chronically infected with hepatitis B virus. Am J Gastroenterol. 2002;97(8):2086–2092. doi: 10.1111/j.1572-0241.2002.05926.x.
  67. Miroux C, Vausselin T, Delhem N. Regulatory T cells in HBV and HCV liver diseases: implication of regulatory T lymphocytes in the control of immune response. Expert Opin Biol Ther. 2010;10(11):1563–1572. doi: 10.1517/14712598.2010.529125.
  68. Stoop JN, van der Molen RG, Baan CC, et al. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology. 2005;41(4):771–778. doi: 10.1002/hep.20649.
  69. Franzese O, Kennedy PT, Gehring AJ, et al. Modulation of the CD8(+)-T-cell response by CD4(+) CD25(+) regulatory T cells in patients with hepatitis B virus infection. J Virol. 2005;79(6):3322–3328. doi: 10.1128/Jvi.79.6.3322-3328.2005.
  70. Li S, Gowans EJ, Chougnet C, et al. Natural regulatory T cells and persistent viral infection. J Virol. 2008;82(1):21–30. doi: 10.1128/Jvi.01768-07.
  71. Stoop JN, Claassen MA, Woltman AM, et al. Intrahepatic regulatory T cells are phenotypically distinct from their peripheral counterparts in chronic HBV patients. Clin Immunol. 2008;129(3):419–427. doi: 10.1016/j.clim.2008.07.029.
  72. Bertoletti A, Sette A, Chisari FV, et al. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T-cells. Nature. 1994;369(6479):407–410. doi: 10.1038/369407a0.
  73. Whalley SA, Brown D, Webster GJ, et al. Evolution of hepatitis B virus during primary infection in humans: transient generation of cytotox T-cell mutants. Gastroenterology. 2004;127(4):1131–1138. doi: 10.1053/j.gastro.2004.07.004.
  74. Amara A, Mercer J. Viral apoptotic mimicry. Nat Rev Microbiol. 2015;13(8):461–469. doi: 10.1038/nrmicro3469.
  75. Jochum C, Voth R, Rossol S, et al. Immunosuppressive function of hepatitis-B antigens invitro - role of endoribonuclease-V as one potential trans inactivator for cytokines in macrophages and human hepatoma-cells. J Virol. 1990;64(5):1956–1963.
  76. Gavilanes F, Gonzalezros JM, Peterson DL. Structure of hepatitis-B surface-antigen - characterization of the lipid components and their association with the viral-proteins. J Biol Chem. 1982;257(13):7770–7777.
  77. Kagan VE, Gleiss B, Tyurina YY, et al. A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis. J Immunol. 2002;169(1):487–499. doi: 10.4049/jimmunol.169.1.487.
  78. Stefas I, Rucheton M, D’Angeac AD, et al. Hepatitis B virus Dane particles bind to human plasma apolipoprotein H. Hepatology. 2001;33(1):207–217. doi: 10.1053/jhep.2001.20531.
  79. Mevorach D, Mascarenhas JO, Gershov D, Elkon KB. Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med. 1998;188(12):2313–2320. doi: 10.1084/jem.188.12.2313.
  80. Milich DR, Bhatnagar PK, Papas ED, Vyas GN. Interactions between polymerized human albumin, hepatitis B surface antigen, and complement: II. Involvement of Clq in or near the hepatitis B surface antigen receptor for polyalbumin. J Med Virol. 1981;7(3):193–204. doi: 10.1002/jmv.1890070303.
  81. Manfredi AA, Iannacone M, D’Auria F, Rovere-Querini P. The disposal of dying cells in living tissues. Apoptosis. 2002;7(2):153–161. doi: 10.1023/A:1014366531885.
  82. Nauta AJ, Trouw LA, Daha MR, et al. Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur J Immunol. 2002;32(6):1726–1736. doi: 10.1002/1521-4141(200206)32:6<1726::AID-IMMU1726>3.0.CO;2-R.
  83. Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med. 2000;191(3):411–416. doi: 10.1084/jem.191.3.411.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство "Педиатръ", 2017



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах