МЕХАНИЗМЫ ПРОТЕКТОРНОГО ДЕЙСТВИЯ АКТИВИРОВАННЫХ ЭНДОТОКСИНОМ КЛЕТОК КУПФЕРА НА ГЕПАТОЦИТЫ

Обложка


Цитировать

Полный текст

Аннотация

В статье обсуждаются различные аспекты протекторного и повреждающего действия активированных эндотоксином клеток Купфера на гепатоциты. Сформулированы требования, которым должен удовлетворять активируемый медиаторами клеток Купфера внутриклеточный протекторный механизм у гепатоцитов. Рассмотрены два возможных механизма протекторного действия активированных клеток Купфера на гепатоциты, удовлетворяющие этим требованиям. Один из них реализуется на основе активируемой медиаторами клеток Купфера неспецифической реакции гепатоцитов на повреждение, другой — путем активации в гепатоцитах механизма тканевого стресса. Представлены данные, свидетельствующие о формировании в гепатоцитах под действием активированных эндотоксином клеток Купфера неспецифической реакции на повреждение, а также механизма тканевого стресса, реализуемого при участии тканеспецифического эффектора.

 

Об авторах

Г. М. Элбакидзе

Медико-биологический центр Ассоциации содействия международному центру научной культуры — Всемирная лаборатория, Москва

Автор, ответственный за переписку.
Email: gmelbakidze@hotmail.com
доктор биологических наук, академик РАЕН, директор Медико-биологического центра Ассоциации содействия международному центру научной культуры — Всемирная лаборатория Адрес: 125057, Москва, Ленинградский пр-т, д. 71 Тел.: (967) 130-96-01 Россия

Список литературы

  1. Kmiec Z. Cooperation of liver cells in health and disease. Adv. Anat. Embryol. Cell Biol. 2001; 161: III–XIII.
  2. Bellezzo J.M., Britton R.S., Bacon B.R., Fox E.S. LPS-mediated NF-kappa beta activation in rat Kupffer cells can be induced independently of CD14. Am. J. Physiol. 1996; 270 (6 Pt. 1): 956–961.
  3. Yao H.-W., Li J., Chen J.-Q., Xu S.-Y. Leflunomide attenuates hepatocyte injury by inhibiting Kupffer cells. World J. Gastroenterol. 2004; 10 (11): 1608–1611.
  4. Meltzer M.S. Macrophage activation for tumor cytotoxicity: characterization of priming and trigger signals during lymphokine activation. J. Immunol. 1981; 127 (1): 179–183.
  5. Johnson W.J., Marino P.A., Schreiber R.D., Adams D.O. Sequential activation of murine mononuclear phagocytes for tumor cytolysis: differential expression of markers by acrophages in the several stages of development. J. Immunol. 1983; 131 (2): 1038–1043.
  6. Hoek J. B., Pastorino J.G. Ethanol, oxidative stress, and cytokineinduced liver cell injury. Alcohol. 2002; 27 (1): 63–68.
  7. Roberts R.A., Ganey P. E., Ju C., Kamendulis, L. M. et al. Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis. Toxicol. Sci. 2007; 96 (1): 2–15.
  8. Kresse M., Latta M., Kunstle G. et al. Kupffer cell-expressed membrane-bound TNF mediates melphalan hepatotoxicity via activation of both TNF receptors. J. Immunol. 2005; 175 (6): 4076–4083.
  9. He Q., Kim J., Sharma R. P. Fumonisin B1 hepatotoxicity in mice is attenuated by depletion of Kupffer cells by gadolinium chloride. Toxicology. 2005; 207 (1): 137.
  10. Andres D., Sanchez-Reus I., Bautista M. et al. Depletion of Kupffer cell function by gadolinium chloride attenuates thioacetamideinduced hepatotoxicity. Expression of metallothionein and HSP70. Biochem. Pharmacol. 2003; 66 (6): 917–926.
  11. Tejima K., Arai M., Ikeda H. et al. Ischemic preconditioning protects hepatocytes via reactive oxygen species derived from Kupffer cells in rats. Gastroenterology. 2004; 127 (5):1488–1496.
  12. Tapia G., Santibanez C., Farias J. Kupffer-cell activity is essential for thyroid hormone rat liver preconditioning. Mol. Cell Endocrinol. 2010; 323 (2): 292–297.
  13. Prins H.A., Holtz R., Boelens P.G., Diks J. et al. The role of Kupffer cells after major liver surgery. Clin. Nutr. 2003; 22 (1): 53.
  14. Prins H. A., Meijer C., Boelens P. G., Diks, J. et al. Kupffer celldepleted rats have a diminished acute-phase response following major liver resection. Shock (Augusta, Ga.). 2004; 21 (6): 561–565.
  15. Han D., Ybanez M.D., Ahmadi S., Yeh K. Redox regulation of tumor necrosis factor signaling. Antioxid. Redox. Signal. 2009; 11 (9): 2245–2263.
  16. Ju C., Reilly T. P., Bourdi M. et al. Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem. Res. Toxicol. 2002; 15 (12): 1504–1513.
  17. Winwood P.J., Arthur M.J. Kupffer cells: their activation and role in animal models of liver injury and human liver disease. Seminars in Liver Disease. 1993; 13 (1): 50–59.
  18. Alexanderov V.Ia. Reaqtivnost` cletoq i belqi. L.: Nauca. 1985. 318.
  19. E`i`dus L.KH. Nespetcifichesqaia reaqtciia cletoq i radiochuvstvitel`nost`. M.: Atomizdat. 1977. 156.
  20. Kalendo G.S. O vozmozhnosti adaptatcionnogo sindroma — stressa na cletochnom urovne i ego roli v reaqtcii cletqi na obluchenie. Usp. sovr. biol. 1972; 73 (1): 59–80.
  21. Elbakidze G.M., Elbakidze A.G. Principles of Tissue Growth Intratissue Regulation. Collierville: Inst.Publ. 2009. 163.
  22. E`lbaqidze G.M., E`lbaqidze A.G. Mehanizmy` gipermetabolichesqikh sostoianii`. Vestnic RAMN. 2011; 7: 50–54.
  23. Brown A.D., Mozhenoq T.P. Nespetcifichesqii` adaptatcionny`i` sindrom cletochnoi` sistemy`. L.: Nauca. 1987. 230.
  24. Kaina B. Cross-resistance studies with V79 Chinese hamster cells adapted to the mutagenic or clastogenic effect of N-methyl-N’- nitro-N-nitrosoguanidine. Mutat. Res. 1983; 111: 341–352.
  25. Vijayalaxmi L., Burkart W. Resistance and cross-resistance to chromosome damage in human blood lymphocytes adapted to bleomycin. Mutat. Res. 1989; 211: 1–5.
  26. Vijayalaxmi L, Leal B.Z., Deahl T.S. and Meltz M.L. Variability in adaptive response to low dose radiation in human blood lymphocytes: consistent results from chromosome aberrations and micronuclei. Mutat. Res. 1995; 348: 45–50.
  27. New K.J., Eaton S., Elliott K.R.F., Spitz L. et al. Effect of lipopolysaccharide and cytokines on oxidative metabolism in neonatal rat hepatocytes. J. Pediatr. Surg. 2001; 36: 338–340.
  28. Rivera C.A., Bradford B.U., Seabra V., Thurman R.G. Role of endotoxin in the hypermetabolic state after acute ethanol exposure. Am. J. Physiol. 1998; 275 (6 Pt. 1): 1252–1258.
  29. Schemmer P., Enomoto N., Bradford B.U., Bunzendahl H. et al. Activated Kupffer cells cause a hypermetabolic state after gentle in situ manipulation of liver in rats. Am. J. Physiol. Gastrointestinal. 2001; 280. (6): 1076–1082.
  30. Smith R.A., Baglioni C., The active form of TNF is a trimer. J.Biol. Chem. 1987; 262: .6951–6954.
  31. Yokoyama Y., Nimura Y., Nagino M., Bland K.I., Chaudry I.H. Role of thromboxane in producing hepatic injury during hepatic stress. Arch. Surg. 2005; 140 (8): 801–807.
  32. E`lbaqidze G.M., Chelidze M.A., E`lbaqidze I.M. Tqanespetcifichesqaia reguliatciia transporta ionov qal`tciia termostabil`ny`m qomutonom iz pecheni qry`sy`. Doclady` AN. 1990; 313 (2): 474–478.
  33. E`lbaqidze G.M., E`lbaqidze A.G. Kuliqova L.A. Issledovanie uchastiia cletoq Coopfera v initciatcii protcessa prodigiozanzavisimogo naqopleniia qomutona v pecheni qry`sy`. Docl. AN. 2006; 407 (1): 119–123.
  34. E`lbaqidze G.M., E`lbaqidze A.G., Medentcev G.A. Issledovanie vliianiia prodigiozan-zavisimogo qomutona na medlenny`i` vy`hod ionov qal`tciia iz matriqsa mitohondrii` razlichnoi` tqanevoi` i vidovoi` prinadlezhnosti. Docl. AN. 2011; 437 (6): v pechati.
  35. E`lbaqidze G.M., Foi`gel` A.G., Maevsqii` E.I., Bohua B.T. i dr. Issledovanie tqanespetcifichesqoi` Sa2+-zavisimoi` reguliatcii mitohondrial`ny`kh protcessov termostabil`ny`m qomutonom iz pecheni qry`sy`. Docl. AN. 1992; 324 (1): 214–219.
  36. Elbakidze G.M., Elbakidze A.G. Tissue stress — the tissuespecific intratissue adaptation mechanism. VIII World Congr. of Int. Soc. for Adapt. Med., Abstract book. Moscow. 2006. 135–136.
  37. Elbakidze G.M. Comuton — the effector of liver tissue stress. Canad. J. Physiol. Pharmacol. 1994; 72 (1): 610–612.
  38. E`lbaqidze G.M., Medentcev A.G. Issledovanie uslovii` aqqumuliatcii in vitro termostabil`nogo qomutona iz pecheni qry`sy`. Docl. AN. 2002; 387 (4): 553–556.
  39. E`lbaqidze G.M., Medentcev A.G., E`lbaqidze A.G., Shary`shev A.A. Issledovanie vnutricletochnoi` organizatcii qomutonnoi` reguliatcii mitohondrial`ny`kh protcessov v pecheni qry`sy`. Docl. AN. 2006; 408 (5): 704–707.
  40. Morgunov I.G., E`lbaqidze G.M., Medentcev A.G. Vy`delenie i ochistqa qomuton-produtciruiushchego fermenta iz pecheni qry`sy`. Docl. AN. 2003; 389 (2): 67–70.
  41. E`lbaqidze G.M., Chelidze M.A., E`lbaqidze I.M., Foi`gel` A.G. i dr. Ingibitorny`i` analiz tqanespetcifichesqogo dei`stviia vy`soqoochishchennogo termostabil`nogo qomutona iz pecheni qry`sy` na dy`hanie mitohondrii`. Docl. AN SSSR. 1991; 320 (1): 227–231.
  42. E`lbaqidze G.M., Chelidze M.A., Medentcev A.G., Bohua B.T. i dr. Generirovanie gidropereqisi v protcesse fermentativnogo oqisleniia termostabil`nogo qomutona iz pecheni qry`sy`. Docl. AN. 1994; 336 (1): 120–123.
  43. Brovqo F.A., E`lbaqidze G.M., Bohua B.T. Fraqtcionirovanie qomutondioqsigenazy` iz pecheni qry`sy`. Docl. AN. 1994; 338 (3): 401–403.44. Elbakidze G.M., Chelidze M.A., Bokhua B.T. Enzymatic oxidation of the thermostable comuton from rat liver in liver mitochondria. 22-nd FEBS Meeting, Abstract book, Stockholm. 1993. 185.
  44. Tcitologiia fermentov / Pod red. D.B. Rudina. M.: Mir. 1971. 397.
  45. Wisse E., Knook D. The investigation of sinusoidal cells: a new approach to the study of liver function. Progress in liver deseases / H. Popper (ed.). N.-Y.: Raven Press. 1979: 151–176.
  46. E`lbaqidze G.M., E`lbaqidze I.M. Aqtivatciia vnutritqanevogo qontrolia e`nergetichesqogo metabolizma v pecheni pri povy`shenii nagruzqi na spetcial`ny`e funqtcii i ee povrezhdenie gepatotoqsinom.. Docl. AN SSSR. 1986; 291 (3): 719–723.
  47. E`lbaqidze G.M., Chelidze M.A., E`lbaqidze I.M. Vliianie odnoqratnogo vvedeniia fenobarbitala i chety`rekhkhloristogo ugleroda na aqtivnost` qomutona v pecheni qry`sy`. Izv. AN SSSR. Ser. biol. 1989; 5: 666–673.
  48. Saris N.-E.L., Carafoli E. A historical review of cellular calcium handling, with emphasis on mitochondria. Biochem. (Moscow). 2005; 70 (2): 187–194.
  49. Bernardi P., Azzone G.F. A membrane potential-modulated pathway for Ca2+ efflux in rat liver mitochondria. FEBS Lett. 1982: 139: 13–16.
  50. Bernardi P., Scorrano L., Colonna R., Petronilli V. et al. Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur. J. Biochem. 1999; 264 (3): 687–701

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство "Педиатръ", 2012



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах