PREVENTION OF TUBERCULOSIS: CURRENT APPROACHES TO DEVELOPMENT OF VACCINES

Cover Page


Cite item

Full Text

Abstract

This review is focused on recent advances in development of new vaccines for the prevention of tuberculosis. The main reasons for lack of BCG vaccine efficacy in different populations and geographic regions are presented. Design of new vaccines based on live modified strains of Mycobacterium bovis BCG, attenuated strains of Mycobacterium tuberculosis, recombinant proteins and viral vectors is considered in the specific examples. The usage of the heterologous «prime-boost» vaccination strategy against tuberculosis is discussed.

 

About the authors

M. A. Stukova

Research Institute of Influenza, Ministry of Health and Social Development, Saint Petersburg, Russian Federation

Author for correspondence.
Email: stukova@influenza.spb.ru
кандидат медицинских наук, ведущий научный сотрудник лаборатории молеку- лярной вирусологии и генной инженерии ФГБУ «Научно-исследовательский институт гриппа» МЗ РФ Адрес: 197376, Санкт-Петербург, ул. Проф. Попова, д. 15/17 Тел.: (812) 499-15-20 Russian Federation

N. V. Zabolotnykh

Saint-Petersburg Research Institute of Phthisiopulmonology, Ministry of Health and Social Development Saint Petersburg, Russian Federation

Email: zabol-natal@yandex.ru
доктор медицинских наук, ведущий научный сотрудник лаборатории экспери- ментального туберкулеза и новых медицинских технологий ФГБУ «Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии» МЗ РФ Адрес: 191036, Санкт-Петербург, Лиговский пр-т, д. 2-4 Тел.: (812) 297-86-31 Russian Federation

T. I. Vinogradova

Saint-Petersburg Research Institute of Phthisiopulmonology, Ministry of Health and Social Development Saint Petersburg, Russian Federation

Email: vinogradova@spbniif.ru
доктор медицинских наук, профессор, ученый секретарь ФГБУ «Санкт- Петербургский научно-исследовательский институт фтизиопульмонологии» МЗ РФ Адрес: 191036, Санкт-Петербург, Лиговский пр-т, д. 2-4 Тел.: (812) 579-25-84 Russian Federation

V. Ya. Gergert

Central Institute for Tuberculosis, Russian Academy of Medical Science, Moscow, Russian Federation

Email: hergert@mail.ru
доктор медицинских наук, профессор, руководитель отдела иммунологии ФГБУ «Центральный научно-исследовательский институт туберкулеза» РАМН Адрес: 107564, Москва, ул. Яузская аллея, д. 2 Тел.: (499) 785-90-72 Russian Federation

A. S. Apt

Central Institute for Tuberculosis, Russian Academy of Medical Science, Moscow, Russian Federation

Email: stukova@influenza.spb.ru
доктор биологических наук, профессор, заведующий лабораторией иммуногенетики ФГБУ «Центральный научно-исследовательский институт туберкулеза» РАМН Адрес: 107564, Москва, ул. Яузская аллея, д. 2 Тел.: (499) 785-90-72 Russian Federation

V. V. Erokhin

Central Institute for Tuberculosis, Russian Academy of Medical Science, Moscow, Russian Federation

Email: inbi@inbi.ras.ru
доктор биологических наук, профессор, заведующий лабораторией стрессов микроорганизмов ФГБУ «Научно-исследовательский институт биохимии им. А.Н. Баха» РАН Адрес: 125284, Москва, Ленинский пр-т, д. 33 Тел.: (495) 954-40-47 Russian Federation

A. S. Kaprelyants

A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russian Federation

Email: cniit@ramn.ru
доктор медицинских наук, профессор, член-корреспондент РАМН, директор ФГБУ «Центральный научно-исследовательский институт туберкулеза» РАМН Адрес: 107564, Москва, ул. Яузская аллея, д. 2 Тел.: (499) 785-91-36 Russian Federation

P. K. Yablonskii

Saint-Petersburg Research Institute of Phthisiopulmonology, Ministry of Health and Social Development Saint Petersburg, Russian Federation
Saint Petersburg State University, Russian Federation

Email: spbniif_all@mail.ru
доктор медицинских наук, профессор, директор ФГБУ «Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии» МЗ РФ, профессор медицинского факультета ФГБО ВПО «Санкт-Петербургский государственный университет» Адрес: 191036, Санкт-Петербург, Лиговский пр-т, д. 2-4 Тел.: (812) 579-25-54 Russian Federation

O. I. Kiselev

Research Institute of Influenza, Ministry of Health and Social Development, Saint Petersburg, Russian Federation

Email: office@influenza.spb.ru
академик РАМН, профессор, директор ФГБУ «Научно-исследовательский институт гриппа» МЗ РФ Адрес: 197376, Санкт-Петербург, ул. Проф. Попова, д. 15/17 Тел.: (812) 234-60-00 Russian Federation

References

  1. Morozov Yu.A., Khadeeva P.V., Mikhailova L.V. Immunization of tuberculosis BCG vaccine in children from contact and from an unidentified contact. Probl. tub. i bol. legkikh = Problems of tuberculosis and lung diseases. 2005; 1: 29–32.
  2. Aksenova V.A., Levi D.T., Fonina E.V., Vundtsettel' N.N. Vaccine prophylaxis of tuberculosis: the importance and challenges. Probl. tub. i bol. legkikh = Problems of tuberculosis and lung diseases. 2009; 1: 10–16.
  3. Klevtsova G.A., Minina N.A., Sanakoeva L.P. Specific phagocytic leukocyte reaction in children infected and affected by tuberculosis. Tr. Perm. med. institute = Bulletin of Perm Medical Institute. 1984; 160: 8–11.
  4. Sanakoeva L.P. Specific changes in phagocytic activity of white blood cells in children after vaccination with BCG. Probl. tub. i bol. legkikh = Problems of tuberculosis and lung diseases. 2003; 8: 40–43.
  5. Russell D.G., Barry C.E., Flynn J.L. Tuberculosis: what we don’t know can, and does, hurt us. Science. 2010; 328: 852–856.
  6. WHO. BCG vaccine. WHO position paper. Wkly Epidemiol. Rec. 2004; 79 (4): 27–38.
  7. Rodrigues L.C., Pereira S.M., Cunha S.S., Genser B., Ichihara M.Y., de Brito S.C., Hijjar M.A., Dourado I., Cruz A.A., Sant'Anna C., Bierrenbach A.L., Barreto M.L..Effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: the BG-REVAC cluster-randomised trial. Lancet. 2005; 366 (9493): 1290–1295.
  8. Black G.F., Dockrell H.M., Crampin A.C., Floyd S., Weir R.E., Bliss L., Sichali L., Mwaungulu L., Kanyongoloka H., Ngwira B., Warndorff D.K., Fine P.E. Patterns and implications of naturally acquired immune responses to environmental and tuberculous mycobacterial antigens in northern Malawi. J. Infect. Dis. 2001; 184 (3): 322–329.
  9. Weir R.E., Black G.F., Nazareth B., Nazareth B., Floyd S., Stenson S., Stanley C., Branson K., Sichali L., Chaguluka S.D., Donovan L., Crampin A.C., Fine P.E., Dockrell H.M. The influence of previous exposure to environmental mycobacteria on the interferon-gamma response to bacille Calmette-Guérin vaccination in southern England and northern Malawi. Clin. Exp. Immunol. 2006; 146 (3): 390–399.
  10. Brandt L., Feino C.J., Weinreich O.A. Weinreich Olsen A., Chilima B., Hirsch P., Appelberg R., Andersen P. Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect. Immun. 2002; 70: 672–678.
  11. Delogu G., Fadda G. The quest for a new vaccine against tuberculosis. J. Infect. Dev. Ctries. 2009; 3 (1): 5–15.
  12. Andersen P., Doherty T.M. The success and failure of BCG-implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 2005; 3: 656–662.
  13. Rowland R., McShane H. Tuberculosis vaccines in clinical trials. Expert. Rev. Vaccines. 2011; 10 (5): 645–658.
  14. Resende Co T., Hirsch C.S., Toossi Z., Dietze R., Ribeiro-Rodrigues R. Intestinal helminth co-infection has a negative impact on both anti-Mycobacterium tuberculosis immunity and clinical response to tuberculosis therapy. Clin. Exp. Immunol. 2007; 147: 45–52.
  15. Hatherill M., Adams V., Hughes J., De Kock M., Mavakla W., Pienaar B., Mahomed H., Hussey G., Hanekom W.A..The potential impact of helminth infection on trials of novel tuberculosis vaccines. Vaccine 2009; 27 (35): 4743–4744.
  16. Rafi W., Ribeiro-Rodrigues R., Ellner J.J., Salgame P. Coinfection-helminthes and tuberculosis. Curr. Opin. HIV AIDS. 2012; 7 (3): 239–244.
  17. Churina E.G., Novitskii V.V., Urazova O.I. Factors immunosuppression in various pathologies. Byull. sibirskoi meditsiny = Bull. of Siberian medicine. 2011; 4: 103–111
  18. Elias D., Britton S., Aseffa A., Engers H., Akuffo H. Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-beta production. Vaccine. 2008; 26 (31): 3897–3902.
  19. Mahairas G.G., Sabo P.J., Hickey M.J., Singh D.C., Stover C.K. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 1996; 178 (5): 1274–1282.
  20. Brodin P., Rosenkrands I., Andersen P., Cole S.T., Brosch R. ESAT- 6 proteins: protective antigens and virulence factors? Trends Microbiol. 2004; 12: 500–508.
  21. Guinn K.M., Hickey M.J., Mathur S.K., Zakel K.L., Grotzke J.E., Lewinsohn D.M., Smith S., Sherman D.R. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol. Microbiol. 2004; 51: 359–370.
  22. van Pinxteren L.A., Ravn P., Agger E.M., Pollock J., Andersen P. Diagnosis of tuberculosis based on the two specific antigens ESAT-6 and CFP10. Clin. Diagn. Lab. Immunol. 2000; 7: 155–160.
  23. Flynn J.L., Chan J. Immunology of tuberculosis. Ann. Rev. Immunol. 2001; 19: 93–129.
  24. Flynn J.L. Immunology of tuberculosis and implications in vaccine development. Tuberculosis (Edinb). 2004; 84 (1–2): 93–101.
  25. Grode L., Seiler P., Baumann S., Hess J., Brinkmann V., Nasser Eddine A., Mann P., Goosmann C., Bandermann S., Smith D., Bancroft G.J., Reyrat J.M., van Soolingen D., Raupach B., Kaufmann S.H. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacilli Calmette-Guerin mutants that secrete listeriolysin. J. Clin. Invest. 2005; 115: 2472–2479.
  26. Orme I.M. The Achilles heel of BCG. Tuberculosis (Edinb). 2010; 90: 329–332.
  27. Behr M.A. BCG-different strains, different vaccines? Lancet Infect. Dis. 2002; 2 (2): 86–92.
  28. Ritz N., Hanekom W.A., Robins-Browne R., Britton W.J., Curtis N. Influence of BCG vaccine strain on the immune response and protection against tuberculosis. FEMS Microbiol. Rev. 2008; 32 (5): 821–841.
  29. Brosch R., Gordon S.V., Garnier T., Eiglmeier K., Frigui W., Valenti P., Dos Santos S., Duthoy S., Lacroix C., Garcia-Pelayo C., Inwald J.K., Golby P., Garcia J.N., Hewinson R.G., Behr M.A., Quail M.A., Churcher C., Barrell B.G., Parkhill J., Cole S.T. Genome plasticity of BCG and impact on vaccine efficacy. Proc. Natl. Acad. Sci. USA. 2007; 104: 5596–5601.
  30. Corbel M.J., Fruth U., Griffiths E., Knezevic I. Report on a WHO consultation on the characterisation of BCG strains. Vaccine. 2004; 22: 2675–2680.
  31. Ottenhoff T.H.M., Kaufmann S.H.E Vaccines against tuberculosis: where we are and where do we need to go. PLoS Pathogens. 2012; 8: 1002607.
  32. Radosević K., Rodriguez A., Lemckert A., Goudsmit J. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects. Expert Rev. Vaccines. 2009; 8 (5): 577–592.
  33. Svenson S., Källenius G., Pawlowski A., Hamasur B. Towards new tuberculosis vaccines. Hum. Vaccin. 2010; 6 (4): 309–317.
  34. Young D., Dye C. The development and impact of tuberculosis vaccines. Cell. 2006; 124 (4): 683–687.
  35. Hess J., Miko D., Catic A., Lehmensiek V., Russell D.G., Kaufmann S.H. Mycobacterium bovis bacille Calmette-Guérin strains secreting listeriolysin of Listeria monocytogenes. Proc. Natl. Acad. Sci. USA. 1998; 95 (9): 5299–5304.
  36. Pym A.S., Brodin P., Majlessi L., Brosch R., Demangel C., Williams A., Griffiths K.E., Marchal G., Leclerc C., Cole S.T. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med. 2003; 9 (5): 533–539.
  37. Horwitz M.A., Harth G., Dillon B.J., Maslesa-Galic S. Recombinant bacillus calmette-guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc. Natl. Acad. Sci. USA. 2000; 97: 13853–13858.
  38. Hoft D.F., Blazevic A., Abate G., Hanekom W.A., Kaplan G., Soler J.H., Weichold F., Geiter L., Sadoff J.C., Horwitz M.A. A new recombinant bacille Calmette-Guerin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers. J. Infect. Dis. 2008; 198: 1491–1501.
  39. Sun R., Skeiky Y.A., Izzo A. Dheenadhayalan V., Imam Z., Penn E., Stagliano K., Haddock S., Mueller S., Fulkerson J., Scanga C., Grover A., Derrick S.C., Morris S., Hone D.M., Horwitz M.A., Kaufmann S.H., Sadoff J.C. Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine. 2009; 27: 4412–4423.
  40. Sampson S.L., Dascher C.C., Sambandamurthy V.K., Russell R.G., Jacobs W.R. Jr., Bloom B.R., Hondalus M.K. Protection elicited by a double leucine and pantothenate auxotroph of Mycobacterium tuberculosis in guinea pigs. Infect. Immun. 2004; 72: 3031–3037.
  41. Larsen M.H., Biermann K., Chen B., Hsu T., Sambandamurthy V.K., Lackner A.A., Aye P.P., Didier P., Huang D., Shao L., Wei H., Letvin N.L., Frothingham R., Haynes B.F., Chen Z.W., Jacobs W.R. Jr. Efficacy and safety of live attenuated persistent and rapidly cleared Mycobacterium tuberculosis vaccine candidates in non-human primates. Vaccine. 2009; 27: 4709–4717.
  42. Sambandamurthy V.K., Derrick S.C., Jalapathy K.V., Chen B., Russell R.G., Morris S.L., Jacobs W.R. Jr. Long-term protection against tuberculosis following vaccination with a severely attenuated double lysine and pantothenate auxotroph of Mycobacterium tuberculosis. Infect. Immun. 2005; 73 (2): 1196–1203.
  43. Sampson S.L., Mansfield K.G., Carville A., Magee D.M., Quitugua T., Howerth E.W., Bloom B.R., Hondalus M.K. Extended safety and efficacy studies of a live attenuated double leucine and pantothenate auxotroph of Mycobacterium tuberculosis as a vaccine candidate. Vaccine. 2011; 29: 4839–4847.
  44. Cardona P.J., Asensio J.G., Arbués A., Otal .I, Lafoz C., Gil O., Caceres N., Ausina V., Gicquel B., Martin C. Extended safety studies of the attenuated live tuberculosis vaccine SO2 based on phoP mutant. Vaccine. 2009; 27 (18): 2499–2505.
  45. Ferrer N.L., Gómez A.B., Soto C.Y. et al. Intracellular replication of attenuated Mycobacterium tuberculosis phoP mutant in the absence of host cell cytotoxicity. Microbes Infect. 2009; 11(1): 115-122.
  46. Verreck F.A., Vervenne R.A., Kondova I., van Kralingen K.W., Remarque E.J., Braskamp G., van der Werff N.M., Kersbergen A., Ottenhoff T.H., Heidt P.J., Gilbert S.C., Gicquel B., Hill A.V., Martin C., McShane H., Thomas A.W. MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS One. 2009; 4 (4): 5264–5270.
  47. Hinchey J., Lee S., Jeon B.Y., Basaraba R.J., Venkataswamy M.M., Chen B., Chan J., Braunstein M., Orme I.M., Derrick S.C., Morris S.L., Jacobs W.R. Jr., Porcelli S.A. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J. Clin. Invest. 2007; 117 (8): 2279–2288.
  48. Kondratieva T., Rubakova E., Kana B.D., Biketov S., Potapov V., Kaprelyants A., Apt A. Mycobacterium tuberculosis attenuated by multiple deletions of rpf genes effectively protects mice against TB infection. Tuberculosis (Edinb). 2011; 91 (3): 219–223.
  49. van Dissel J.T., Soonawala D., Joosten S.A., Prins C., Arend S.M., Bang P., Tingskov P.N., Lingnau K., Nouta J., Hoff S.T., Rosenkrands I., Kromann I., Ottenhoff T.H., Doherty T.M., Andersen P.Ag85B-ESAT-6 adjuvanted with IC31 promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in volunteers with previous BCG vaccination or tuberculosis infection. Vaccine. 2011; 29 (11): 2100–2109.
  50. Aagaard C., Hoang T., Dietrich J., Cardona P.J., Izzo A., Dolganov G., Schoolnik G.K., Cassidy J.P., Billeskov R., Andersen P. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat. Med. 2011; 17 (2): 189–194
  51. Skeiky Y.A., Lodes M.J., Guderian J.A., Mohamath R., Bement T., Alderson M.R., Reed S.G. Cloning, expression, and immunological evaluation of two putative secreted serine protease antigens of Mycobacterium tuberculosis. Infect. Immun. 1999; 67 (8): 3998–4007.
  52. Lima K.M., dos Santos S.A., Rodrigues J.M., Silva C.L. Vaccine adjuvant: it makes the difference. Vaccine. 2004; 22: 2374–2379.
  53. Agger E.M., Rosenkrands I., Hansen J., Brahimi K., Vandahl B.S., Aagaard C., Werninghaus K., Kirschning C., Lang R., Christensen D., Theisen M., Follmann F., Andersen P. Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PLoS One. 2008; 3 (9): 3116–3123.
  54. Kamath A.T., Rochat A.F., Valenti M.P., Agger E.M., Lingnau K., Andersen P., Lambert P.H., Siegrist C.A. Adult-like anti-mycobacterial T cell and in vivo dendritic cell responses following neonatal immunization with Ag85B-ESAT-6 in the IC31 adjuvant. PLoS One. 2008; 3 (11): 3683–3689.
  55. Leroux-Roels I., Leroux-Roels G., Ofori-Anyinam O., Moris P., De Kock E., Clement F., Dubois M.C., Koutsoukos M., Demoitié M.A., Cohen J., Ballou W.R. Evaluation of the safety and immunogenicity of two antigen concentrations of the Mtb72F/AS02(A)candidate tuberculosis vaccine in purified protein derivative-negative adults. Clin. Vaccine Immunol. 2010; 17 (11): 1763–1771.
  56. Moreno-Mendieta S.A., Rocha-Zavaleta L., Rodriguez-Sanoja R. Adjuvants in tuberculosis vaccine development. FEMS Immunol. Med. Microbiol. 2010; 58 (1): 75–84.
  57. Stukova M.A., Sereinig S., Zabolotnyh N.V., Ferko B., Kittel C., Romanova J., Vinogradova T.I., Katinger H., Kiselev O.I., Egorov A. Vaccine potential of influenza vectors expressing Mycobacterium tuberculosis ESAT-6 protein. Tuberculosis (Edinb). 2006; 86 (3–4): 236–246.
  58. Abel B., Tameris M., Mansoor N., Gelderbloem S., Hughes J., Abrahams D., Makhethe L., Erasmus M., de Kock M., van der Merwe L., Hawkridge A., Veldsman A., Hatherill M., Schirru G., Pau M.G., Hendriks J., Weverling G.J., Goudsmit J., Sizemore D., McClain J.B., Goetz M., Gearhart J., Mahomed H., Hussey G.D., Sadoff J.C., Hanekom W.A. The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4 and CD8 T cells in adults. Am. J. Respir. Crit. Care Med. 2010; 181: 1407–1417.
  59. McShane H. Tuberculosis vaccines: beyond bacille Calmette-Guerin. Philos Trans. R. Soc. Lond. B Biol. Sci. 2011; 366 (1579): 2782–2789.
  60. Martin C., Williams A., Hernandez-Pando R., Cardona P.J., Gormley E., Bordat Y., Soto C.Y., Clark S.O., Hatch G.J., Aguilar D., Ausina V., Gicquel B.The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine. 2006; 24: 3408–3419.
  61. Larsen M.H., Biermann K., Chen B., Hsu T., Sambandamurthy V.K., Lackner A.A., Aye P.P., Didier P., Huang D., Shao L., Wei H., Letvin N.L., Frothingham R., Haynes B.F., Chen Z.W., Jacobs W.R. Jr. Efficacy and safety of live attenuated persistent and rapidly cleared Mycobacterium tuberculosis vaccine candidates in non-human primates. Vaccine. 2009; 27: 4709–4717.
  62. Derrik S.C., Evering T.H., Sambandamurthy V.K., Jalapathy K.V., Hsu T., Chen B., Chen M., Russell R.G., Junqueira-Kipnis A.P., Orme I.M., Porcelli S.A., Jacobs W.R. Jr, Morris S.L. Characterization of the protective T-cell response generated in D4-defident miсe by a live attenuated Mycobacterium tuberculosis vaccine. Immunology. 2007; 120 (2): 192–206.
  63. Christensen D., Foged C., Rosenkrands I., Lundberg C.V., Andersen P., Agger E.M., Nielsen H.M. CAF01 liposomes as a mucosal vaccine adjuvant: In vitro and in vivo investigations. Int. J. Pharm. 2010; 390 (1): 19–24.
  64. Von Eschen K., Morrison R., Braun M., Ofori-Anyinam O., De Kock E., Pavithran P., Koutsoukos M., Moris P., Cain D., Dubois M.C., Cohen J., Ballou W.R.The candidate tuberculosis vaccine Mtb72F/AS02A: tolerability and immunogenicity in humans. Hum. Vaccin. 2009; 5: 475–482.
  65. Leroux-Roels I., Forgus S., De Boever F., Clement F., Demoitié M.A., Mettens P., Moris P., Ledent E., Leroux-Roels G., Ofori-Anyinam O.; The M72 Study Group. Improved CD4(+) T cell responses to Mycobacterium tuberculosis in PPD-negative adults by M72/AS01 as compared to the M72/AS02 and Mtb72F/AS02 tuberculosis candidate vaccine formulations: A randomized trial. Vaccine. 2012; 26 (in press).
  66. Dietrich J., Aagaard C., Leah R., Olsen A.W., Stryhn A., Doherty T.M., Andersen P.Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy. J. Immunol. 2005; 174: 6332–6339.
  67. McShane H., Pathan A.A., Sander C.R., Keating S.M., Gilbert S.C., Huygen K., Fletcher H.A., Hill A.V.Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG primed and naturally acquired antimycobacterial immunity in humans. Nat. Med. 2004; 10: 1240–1244.
  68. Scriba T.J., Tameris M., Mansoor N., Smit E., van der Merwe L., Isaacs F., Keyser A., Moyo S., Brittain N., Lawrie A., Gelderbloem S., Veldsman A., Hatherill M., Hawkridge A., Hill A.V., Hussey G.D., Mahomed H., McShane H., Hanekom W.A. Modified vaccinia Ankara expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4 T cells. Eur. J. Immunol. 2010; 40: 279–290.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies