Возможности фармакологической регуляции HIF для коррекции опосредованных ими патологических состояний в клинической практике

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Проведен анализ экспериментальных и клинических исследований эффективности и безопасности лекарственных средств, основной мишенью действия которых является гипоксией индуцированный фактор (HIF). Ингибиторы HIF продолжают широко исследоваться с целью их внедрения в клиническую практику, прежде всего в лечение раковых опухолей, например, ингибитор HIF-2α белзутифан, разрешенный к применению при опухолях, ассоциированных с болезнью фон Гиппеля–Линдау (VHL). Применение индукторов транскрипционного фактора HIF инициирует прекондиционирование, что может быть востребовано в случае острой предсказуемой ишемии миокарда или головного мозга (при операциях на сердце или сосудах). Продолжительное назначение некоторых из них, в частности ингибиторов пролилгидроксилазы, в лечении анемии при хронической болезни почек не может исключать активацию неоангиогенеза, что сопряжено с риском проонкогенного действия, а также повышенный риск тромбозов и сердечно-сосудистых нарушений.

Полный текст

Доступ закрыт

Об авторах

Василий Егорович Новиков

Смоленский государственный медицинский университет

Автор, ответственный за переписку.
Email: novikov.farm@yandex.ru
ORCID iD: 0000-0002-0953-7993

д.м.н., профессор

Россия, Смоленск

Ольга Сергеевна Левченкова

Смоленский государственный медицинский университет

Email: levchenkova-o@yandex.ru
ORCID iD: 0000-0002-9595-6982
SPIN-код: 2888-6150

д.м.н., доцент

Россия, Смоленск

Список литературы

  1. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–732. doi: https://doi.org/10.1038/nrc1187
  2. Semenza GL. Pharmacologic targeting of Hypoxia-inducible factors. Ann Rev Pharmacol Toxicol. 2019;59(1):379–403. doi: https://doi.org/10.1146/annurev-pharmtox-010818-021637
  3. Fandrey J, Schödel J, Eckardt K, et al. Now a Nobel gas: oxygen. Pflügers Arch. 2019;471(11–12):1343–1358. doi: https://doi.org/10.1007/s00424-019-02334-8
  4. Лукьянова Л.Д. Сигнальные механизмы гипоксии. — М.: РАН, 2019. [Luk’janova L.D. Signal’nye mehanizmy gipoksii. Moscow: RAN; 2019. (In Russ.)]
  5. Albadari N, Deng S, Li W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin Drug Discov. 2019;14(7):667–682. doi: https://doi.org/10.1080/17460441.2019.1613370
  6. Левченкова О.С., Новиков В.Е. Возможности фармакологического прекондиционирования // Вестник РАМН. — 2016. — Т. 71. — № 1. — С. 16–24. [Levchenkova OS, Novikov VE. Possibilities of pharmacological preconditioning. Annals of the Russian Academy of Medical Sciences. 2016;71(1):16–24. (In Russ.)] doi: https://doi.org/10.15690/vramn626
  7. Хушпульян Д.М., Никулин С.В., Чубарь Т.А., и др. Гены «быстрого» отклика при действии ингибиторов HIF пролилгидроксилазы // Вестник Московского университета. Серия 2. Химия. — 2021. — Т. 62. — № 3. — С. 213–222. [Hushpulian DM, Nikulin SV, Chubar TA, et al. Fast responding genes to HIF prolyl hydroxylase inhibitors. Moscow University Chemistry Bulletin. 2021;62(3):213–222. (In Russ.)]
  8. Semenza GL. Breakthrough science: hypoxia-inducible factors, oxygen sensing, and disorders of hematopoiesis. Blood. 2022;139(16):2441–2449. doi: https://doi.org/10.1182/blood.2021011043
  9. Новиков В.Е., Левченкова О.С. Перспективы применения ингибиторов фактора адаптации к гипоксии в онкологии // Вестник Смоленской государственной медицинской академии. — 2015. — Т. 14. — № 3. — С. 21–26. [Novikov VE, Levchenkova OS. Prospects of inhibitors of adaptation to hypoxia in cancer medicine. Vestnik of the Smolensk State Medical Academy. 2015;3(14):21–26. (In Russ.)]
  10. Semenza GL. Mechanisms of Breast Cancer Stem Cell Specification and Self-Renewal Mediated by Hypoxia-Inducible Factor 1. Stem Cells Transl Med. 2023;12(12):783–790. doi: https://doi.org/10.1093/stcltm/szad061
  11. Infantino V, Santarsiero A, Convertini P, et al. Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target. Int J Mol Sci. 2021;22(11):5703. doi: https://doi.org/10.3390/ijms22115703
  12. Kao TW, Bai GH, Wang TL, et al. Novel cancer treatment paradigm targeting hypoxia-induced factor in conjunction with current therapies to overcome resistance. J Exp Clin Cancer Res. 2023;42(1):171. doi: https://doi.org/10.1186/s13046-023-02724-y
  13. Chen Y, Liu L, Xia L, et al. TRPM7 silencing modulates glucose metabolic reprogramming to inhibit the growth of ovarian cancer by enhancing AMPK activation to promote HIF-1α degradation. J Exp Clin Cancer Res. 2022;41(1):44. doi: https://doi.org/10.1186/s13046-022-02252-1
  14. Elzakra N, Kim Y. HIF-1α Metabolic Pathways in Human Cancer. Adv Exp Med Biol. 2021;1280:243–260. doi: https://doi.org/10.1007/978-3-030-51652-9_17
  15. Domènech M, Hernández A, Plaja A, et al. Hypoxia: The Cornerstone of Glioblastoma. Int J Mol Sci. 2021;22(22):12608. doi: https://doi.org/10.3390/ijms222212608
  16. Wicks EE, Semenza GL. Hypoxia-inducible factors: cancer progression and clinical translation. J Clin Invest. 2022;132(11):e159839. doi: https://doi.org/10.1172/JCI159839
  17. Rani S, Roy S, Singh M, Kaithwas G. Regulation of Transactivation at C-TAD Domain of HIF-1α by Factor-Inhibiting HIF-1α (FIH-1): A Potential Target for Therapeutic Intervention in Cancer. Oxid Med Cell Longev. 2022:2407223. doi: https://doi.org/10.1155/2022/2407223
  18. Abdelhaleem EF, Kassab AE, El-Nassan HB, et al. Design, synthesis, and biological evaluation of new celecoxib analogs as apoptosis inducers and cyclooxygenase-2 inhibitors. Arch Pharm (Weinheim). 2022;355(11):e2200190. doi: https://doi.org/10.1002/ardp.202200190
  19. Zhang M, Zhang Y, Ding Y, et al. Regulating the Expression of HIF-1α or lncRNA: Potential Directions for Cancer Therapy. Cells. 2022;11(18):2811. doi: https://doi.org/10.3390/cells11182811
  20. Zhang H, Wei S, Zhang Y, et al. Improving cellular uptake and bioavailability of periplocymarin-linoleic acid prodrug by combining PEGylated liposome. Drug Deliv. 2022;29(1):2491–2497. doi: https://doi.org/10.1080/10717544.2022.2104406
  21. Rahmanian-Devin P, Baradaran Rahimi V, Jaafari MR, et al. Noscapine, an Emerging Medication for Different Diseases: A Mechanistic Review. Evid Based Complement Alternat Med. 2021:8402517. doi: https://doi.org/10.1155/2021/8402517
  22. Pang Y, Yang C, Schovanek J, et al. Anthracyclines suppress pheochromocytoma cell characteristics, including metastasis, through inhibition of the hypoxia signaling pathway. Oncotarget. 2017;8(14):22313–22324. doi: https://doi.org/10.18632/oncotarget.16224
  23. Li Y, Luo J, Lin MT, et al. Co-Delivery of Metformin Enhances the Antimultidrug Resistant Tumor Effect of Doxorubicin by Improving Hypoxic Tumor Microenvironment. Mol Pharm. 2019;16(7):2966–2979. doi: https://doi.org/10.1021/acs.molpharmaceut.9b00199
  24. Giannopoulou AI, Kanakoglou DS, Piperi C. Transcription Factors with Targeting Potential in Gliomas. Int J Mol Sci. 2022;23(7):3720. doi: https://doi.org/10.3390/ijms23073720
  25. Toledo RA, Jimenez C, Armaiz-Pena G, et al. Hypoxia-Inducible Factor 2 Alpha (HIF2α) Inhibitors: Targeting Genetically Driven Tumor Hypoxia. Endocr Rev. 2023;44(2):312–322. doi: https://doi.org/10.1210/endrev/bnac025
  26. Sebestyén A, Kopper L, Dankó T, et al. Hypoxia Signaling in Cancer: From Basics to Clinical Practice. Pathol Oncol Res. 2021;27:1609802. doi: https://doi.org/10.3389/pore.2021.1609802
  27. Zhang Y, Nguyen CC, Zhang NT, et al. Neurological applications of belzutifan in von Hippel-Lindau disease. Neuro Oncol. 2023;25(5):827–838. doi: https://doi.org/10.1093/neuonc/noac234
  28. Choi WW, Boland JL, Kalola A, et al. Belzutifan (MK-6482): Biology and Clinical Development in Solid Tumors. Curr Oncol Rep. 2023; 25(2):123–129. doi: https://doi.org/10.1007/s11912-022-01354-5
  29. Rashid M, Zadeh LR, Baradaran B, et al. Up-down regulation of HIF-1α in cancer progression. Gene. 2021;798:145796. doi: https://doi.org/10.1016/j.gene.2021.145796
  30. Lee SH, Golinska M, Griffiths JR. HIF-1-Independent Mechanisms Regulating Metabolic Adaptation in Hypoxic Cancer Cells. Cells. 2021;10(9):2371. doi: https://doi.org/10.3390/cells10092371
  31. Nagle DG, Yu-Dong Z. Natural product-derived small molecule activators of Hypoxia-inducible factor-1 (HIF-1). Curr Pharm Des. 2006;12(21):2673–2688. doi: https://doi.org/10.2174/138161206777698783
  32. Sato T, Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. J Cardiol. 2023;81(2):202–208. doi: https://doi.org/10.1016/j.jjcc.2022.09.002
  33. Davis CK, Jain SA, Bae O, et al. Hypoxia mimetic agents for ischemic stroke. Front Cell Dev Biol. 2019;6:175. doi: https://doi.org/10.3389/fcell.2018.00175
  34. Sergesketter AR, Cason RW, Ibrahim MM, et al. Perioperative treatment with a prolyl hydroxylase inhibitor reduces necrosis in a rat ischemic skin flap model. Plast Reconstr Surg. 2019;143(4):769e–779e. doi: https://doi.org/10.1097/PRS.0000000000005441
  35. Savyuk M, Krivonosov M, Mishchenko T, et al. Neuroprotective effect of HIF Prolyl Hydroxylase inhibition in an in vitro hypoxia model. Antioxidants (Basel). 2020;9(8):662. doi: https://doi.org/10.3390/antiox9080662
  36. Chen J, Lin X, Yao C, et al. Transplantation of Roxadustat-preconditioned bone marrow stromal cells improves neurological function recovery through enhancing grafted cell survival in ischemic stroke rats. CNS Neurosci Ther. 2022;28(10):1519–1531. doi: https://doi.org/10.1111/cns.13890
  37. Deguchi H, Ikeda M, Ide T, et al. Roxadustat Markedly Reduces Myocardial Ischemia Reperfusion Injury in Mice. Circ J. 2020;84(6):1028–1033. doi: https://doi.org/10.1253/circj.CJ-19-1039
  38. Верткин А.Л., Прохорович Е.А., Кнорринг Г.Ю. Хроническая болезнь почек: диагностика, ведение и терапия ассоциированной анемии // Терапия. — 2022. — Т. 8. — № 6. — С. 109–119. [Vertkin AL, Prokhorovich ЕА, Knorring GYu. Diagnosis, management of chronic kidney disease and therapy of anemia associated with CKD. Therapy. 2022;8(6):109–119. (In Russ.)] doi: https://doi.org/10.18565/therapy.2022.6.109-119
  39. Ogawa C, Tsuchiya K, Maeda K. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors and Iron Metabolism. Int J Mol Sci. 2023;24(3):3037. doi: https://doi.org/10.3390/ijms24033037
  40. Мельник А.А. Гипоксией индуцированный фактор для лечения анемии при хронической болезни почек // Почки. — 2018. — Т. 7. — № 4. — С. 311–321. [Melnyk AA. Hypoxia-induced factor for the treatment of anemia in chronic kidney disease. Kidneys. 2018;7(4):311–321. (In Russ.)] doi: https://doi.org/10.22141/2307-1257.7.4.2018.148522
  41. Mahajan R, Samanthula G, Srivastava S, Asthana A. A critical review of Roxadustat formulations, solid state studies, and analytical methodology. Heliyon. 2023;9(6):e16595. doi: https://doi.org/10.1016/j.heliyon.2023.e16595
  42. Dhillon S. Roxadustat: First Global Approval. Drugs. 2019;79(5):563–572. doi: https://doi.org/10.1007/s40265-019-01077-1
  43. Chen H, Cheng Q, Wang J, et al. Long-term efficacy and safety of hypoxia-inducible factor prolyl hydroxylase inhibitors in anaemia of chronic kidney disease: A meta-analysis including 13,146 patients. J Clin Pharm Ther. 2021;46(4):999–1009. doi: https://doi.org/10.1111/jcpt.13385
  44. Hirota K. HIF-α Prolyl Hydroxylase Inhibitors and Their Implications for Biomedicine: A Comprehensive Review. Biomedicines. 2021;9(5):468. doi: https://doi.org/10.3390/biomedicines9050468
  45. Yang J, Xing J, Zhu X, et al. Effects of hypoxia-inducible factor-prolyl hydroxylase inhibitors vs. erythropoiesis-stimulating agents on iron metabolism in non-dialysis-dependent anemic patients with CKD: A network meta-analysis. Front Endocrinol (Lausanne). 2023;14:1131516. doi: https://doi.org/10.3389/fendo.2023.1131516
  46. Куркин Д.В., Бакулин Д.А., Абросимова Е.Е., и др. Фактор, индуцируемый гипоксией, и ингибиторы пролилгидроксилазы — новая фармакологическая мишень и класс лекарственных препаратов, стимулирующих эритропоэз и не только // Успехи физиологических наук. — 2022. — Т. 53. — № 3. — С. 15–44. [Kurkin DV, Bakulin DA, Abrosimova EE, et al. HIF and Prolyl Hydroxylase Inhibitors — a New Pharmacological Target and a Medicinal Drugs Class Stimulating Not Only Erythropoiesis, But More. Physics-Uspekhi. 2022;53(3):15–44. (In Russ.)] doi: https://doi.org/10.31857/S0301179822030067
  47. Negri AL. Role of prolyl hydroxylase/HIF-1 signaling in vascular calcification. Clin Kidney J. 2022;16(2):205–209. doi: https://doi.org/10.1093/ckj/sfac224
  48. Georgy M, Salhiyyah K, Yacoub MH, et al. Role of hypoxia inducible factor HIF-1α in heart valves. Glob Cardiol Sci Pract. 2023;2023(2):e202309. doi: https://doi.org/10.21542/gcsp.2023.9
  49. Chen J, Shou X, Xu Y, et al. A network meta-analysis of the efficacy of hypoxia-inducible factor prolyl-hydroxylase inhibitors in dialysis chronic kidney disease. Aging (Albany NY). 2023;15(6):2237–2274. doi: https://doi.org/10.18632/aging.204611
  50. Li QY, Xiong QW, Yao X, et al. Roxadustat: Do we know all the answers? Biomol Biomed. 2023;23(3):354–363. doi: https://doi.org/10.17305/bb.2022.8437
  51. Cheng S, Zhou T, Yu L, et al. Comparison between the influence of roxadustat and recombinant human erythropoietin treatment on blood pressure and cardio-cerebrovascular complications in patients undergoing peritoneal dialysis. Front Med (Lausanne). 2023;10:1166024. doi: https://doi.org/10.3389/fmed.2023.1166024
  52. Zhou Q, Mao M, Li J, et al. The efficacy and safety of roxadustat for anemia in patients with dialysis-dependent chronic kidney disease: a systematic review and meta-analysis. Ren Fail. 2023;45(1):2195011. doi: https://doi.org/10.1080/0886022X.2023.2195011
  53. Chen D, Niu Y, Liu F, et al. Safety of HIF prolyl hydroxylase inhibitors for anemia in dialysis patients: a systematic review and network meta-analysis. Front Pharmacol. 2023;14:1163908. doi: https://doi.org/10.3389/fphar.2023.1163908
  54. Семочкин С.В. Практические аспекты применения эритропоэзстимулирующих препаратов у пациентов онкогематологического профиля // Медицинский совет. — 2022. — Т. 16. — № 22. — С. 74–84. [Semochkin SV. Practical aspects of the use of erythropoiesis-stimulating agent in patients with hematological malignancy. Meditsinskiy sovet = Medical Council. 2022;16(22):74–84. (In Russ.)] doi: https://doi.org/10.21518/2079-701X-2022-16-22-1
  55. Gul K, Zaman N, Azam SS. Roxadustat and its failure: A comparative dynamic study. J Mol Graph Model. 2023;120:108422. doi: https://doi.org/10.1016/j.jmgm.2023.108422
  56. Besarab A, Chernyavskaya E, Motylev I, et al. Roxadustat (FG-4592): correction of anemia in incident dialysis patients. J Am Soc Nephrol. 2016;27(4):1225. doi: https://doi.org/10.1681/ASN.2015030241
  57. Barratt J, Dellanna F, Portoles J, et al. Safety of Roxadustat Versus Erythropoiesis-Stimulating Agents in Patients with Anemia of Non-dialysis-Dependent or Incident-to-Dialysis Chronic Kidney Disease: Pooled Analysis of Four Phase 3 Studies. Adv Ther. 2023;40(4):1546–1559. doi: https://doi.org/10.1007/s12325-023-02433-0
  58. Semenza GL. Regulation of Erythropoiesis by the Hypoxia-Inducible Factor Pathway: Effects of Genetic and Pharmacological Perturbations. Annu Rev Med. 2023;74:307–319. doi: https://doi.org/10.1146/annurev-med-042921-102602
  59. Kouki Y, Okada N, Saga K, et al. Disproportionality Analysis on Hypothyroidism With Roxadustat Using the Japanese Adverse Drug Event Database. J Clin Pharmacol. 2023;63(10):1141–1146. doi: https://doi.org/10.1002/jcph.2300
  60. Fukui K, Shinozaki Y, Kobayashi H, et al. JTZ-951 (enarodustat), a hypoxia-inducibe factor prolyl hydroxylase inhibitor, stabilizes HIF-α protein and induces erythropoiesis without effects on the function of vascular endothelial growth factor. Eur J Pharmacol. 2019;859:172532. doi: https://doi.org/10.1016/j.ejphar.2019.172532
  61. Bailey CK, Caltabiano S, Cobitz AR, et al. A randomized, 29-day, dose-ranging, efficacy and safety study of daprodustat, administered three times weekly in patients with anemia on hemodialysis. BMC Nephrol. 2019;20(1):372. doi: https://doi.org/10.1186/s12882-019-1547-z
  62. Adams DF, Watkins MS, Durette L, et al. Carcinogenicity Assessment of Daprodustat (GSK1278863), a Hypoxia-Inducible Factor (HIF)-Prolyl Hydroxylase Inhibitor. Toxicol Pathol. 2020;48(2):362–378. doi: https://doi.org/10.1177/0192623319880445
  63. Kachamakova-Trojanowska N, Podkalicka P, Bogacz T, et al. HIF-1 stabilization exerts anticancer effects in breast cancer cells in vitro and in vivo. Biochem Pharmacol. 2020;175:113922. doi: https://doi.org/10.1016/j.bcp.2020.113922
  64. Waldum H. Dysfunction of von-Hippel Lindau factor causes reduced degradation of HIF leading to renal cancer. Hypoxia-inducible factor-prolyl hydroxylase enzyme inhibitors also lessen HIF destruction and could therefore increase renal cancer. Front Pharmacol. 2023;14:1170796. doi: https://doi.org/10.3389/fphar.2023.1170796
  65. Шутов Е.В., Горелова Е.Н., Сороколетов С.М. Ингибиторы пролилгидроксилазы индуцируемого гипоксией фактора в лечении анемии больных с хронической болезнью почек // Эффективная фармакотерапия. — 2022. — Т. 18. — № 3. — С. 22–28. [Shutov EV, Gorelova EN, Sorokoletov SM. Hypoxia-inducible factor prolyl hydroxylase inhibitors in the treatment of anemia in patients with chronic kidney disease. Effektivnaya farmakoterapiya. 2022;18(3):22–28. (In Russ.)]. doi: https://doi.org/10.33978/2307-3586-2022-18-3-22-28

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Сигнальные пути, связанные с HIF, гены-мишени HIF-1

Скачать (376KB)

© Издательство "Педиатръ", 2024



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах