Смена парадигмы: новые подходы к пониманию расстройств аутистического спектра
- Авторы: Устинова Н.В.1,2, Намазова-Баранова Л.С.1,3, Баранов А.А.1, Вишнева Е.А.1,3, Кайтукова Е.В.1,3, Турти Т.В.1,3, Альбицкий В.Ю.1, Селимзянова Л.Р.1,3, Горбунова Е.А.1, Эфендиева К.Е.1,3
-
Учреждения:
- НИИ педиатрии и охраны здоровья детей НКЦ № 2 «РНЦХ им. акад. Б.В. Петровского»
- Научно-практический центр психического здоровья детей и подростков им. Г.Е. Сухаревой
- Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
- Выпуск: Том 78, № 6 (2023)
- Страницы: 589-600
- Раздел: АКТУАЛЬНЫЕ ВОПРОСЫ ПЕДИАТРИИ
- Дата публикации: 23.12.2023
- URL: https://vestnikramn.spr-journal.ru/jour/article/view/12996
- DOI: https://doi.org/10.15690/vramn12996
- ID: 12996
Цитировать
Полный текст
Доступ предоставлен
Доступ платный или только для подписчиков
Аннотация
Значительный рост распространенности расстройств аутистического спектра (РАС) как во всем мире, так и в нашей стране диктует необходимость поиска современных и эффективных методов профилактики, диагностики и оказания медицинской помощи таким пациентам. При этом результаты многочисленных медико-биологических исследований в области аутизма не находят отражения в практическом здравоохранении. Цель работы — обоснование новых подходов к организации медицинской помощи людям с РАС. Методы. Проанализированы результаты перспективных направлений исследований аутизма в области генетики, эпигенетики, метаболомики, микробиома и мультиморбидности, ознаменовавшие смену парадигмы в понимании расстройств аутистического спектра и требующие имплементации в практическую деятельность. На базе концепции 7П- педиатрии (программирующая развитие и здоровье ребенка, профилактическая, предиктивная, персонализированная, партисипативная, полипрофессиональная, прогрессивная) обоснованы необходимость и возможность имплементации результатов научных исследований в реальную клиническую практику ведения детей с аутизмом. Результаты фундаментальных научных исследований в области РАС, раскрывающие их сложную и многогранную природу, позволяют говорить о смене парадигмы в понимании этого расстройства. На основе новой концепции медицинской помощи — 7П-педиатрии — результаты научных исследований могут транслироваться в реальную клиническую практику, включая диагностические, терапевтические, профилактические и реабилитационные воздействия в отношении аутизма, а также программирование оптимальной траектории когнитивно-поведенческого фенотипа детей с особенностями нейроразвития, включая РАС.
Ключевые слова
Полный текст
Об авторах
Наталия Вячеславовна Устинова
НИИ педиатрии и охраны здоровья детей НКЦ № 2 «РНЦХ им. акад. Б.В. Петровского»;Научно-практический центр психического здоровья детей и подростков им. Г.Е. Сухаревой
Автор, ответственный за переписку.
Email: ust-doctor@mail.ru
ORCID iD: 0000-0002-3167-082X
д.м.н.
Россия, Москва; МоскваЛейла Сеймуровна Намазова-Баранова
НИИ педиатрии и охраны здоровья детей НКЦ № 2 «РНЦХ им. акад. Б.В. Петровского»; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Email: orgkomitet@pediatr-russia.ru
ORCID iD: 0000-0002-2209-7531
д.м.н., профессор, академик РАН
Россия, Москва; МоскваАлександр Александрович Баранов
НИИ педиатрии и охраны здоровья детей НКЦ № 2 «РНЦХ им. акад. Б.В. Петровского»
Email: baranov@pediatr-russia.ru
ORCID iD: 0000-0003-3987-8112
д.м.н., профессор, академик РАН
Россия, МоскваЕлена Александровна Вишнева
НИИ педиатрии и охраны здоровья детей НКЦ № 2 «РНЦХ им. акад. Б.В. Петровского»; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Email: vishneva.e@yandex.ru
ORCID iD: 0000-0001-7398-0562
д.м.н., профессор РАН
Россия, Москва; МоскваЕлена Владимировна Кайтукова
НИИ педиатрии и охраны здоровья детей НКЦ № 2 «РНЦХ им. акад. Б.В. Петровского»; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Email: sunrise_ok@mail.ru
ORCID iD: 0000-0002-8936-3590
к.м.н.
Россия, Москва; МоскваТатьяна Владимировна Турти
НИИ педиатрии и охраны здоровья детей НКЦ № 2 «РНЦХ им. акад. Б.В. Петровского»; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Email: turti@mail.ru
ORCID iD: 0000-0002-4955-0121
д.м.н.
Россия, Москва; МоскваВалерий Юрьевич Альбицкий
НИИ педиатрии и охраны здоровья детей НКЦ № 2 «РНЦХ им. акад. Б.В. Петровского»
Email: albicky1941@yandex.ru
ORCID iD: 0000-0003-4314-8366
д.м.н., профессор
Россия, МоскваЛилия Робертовна Селимзянова
НИИ педиатрии и охраны здоровья детей НКЦ № 2 «РНЦХ им. акад. Б.В. Петровского»; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Email: lilysir@mail.ru
ORCID iD: 0000-0002-3678-7939
к.м.н.
Россия, Москва; МоскваЕлена Алексеевна Горбунова
НИИ педиатрии и охраны здоровья детей НКЦ № 2 «РНЦХ им. акад. Б.В. Петровского»
Email: lema020817@gmail.ru
ORCID iD: 0009-0001-0440-2715
к.м.н.
Россия, МоскваКамилла Евгеньевна Эфендиева
НИИ педиатрии и охраны здоровья детей НКЦ № 2 «РНЦХ им. акад. Б.В. Петровского»; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Email: kamillaef@inbox.ru
ORCID iD: 0000-0003-0317-2425
к.м.н.
Россия, Москва; МоскваСписок литературы
- Аутизм // Глобальный веб-сайт ВОЗ. Available from: https://www.who.int/ru/news-room/fact-sheets/detail/autism-spectrum-disorders (accessed: 30.04.2023).
- Расстройство аутистического спектра: клинические рекомендации, 2020. Available from: https://cr.minzdrav.gov.ru/schema/594_1 (accessed: 30.04.2023)
- Diagnostic and Statistical Manual of Mental Disorders (DSM-5). 5th ed. Arlington, VA, USA: American Psychiatric Association; 2013.
- МКБ-11 для ведения статистики смертности и заболеваемости (версия: 01/2023). Available from: https://icd.who.int/browse11/l-m/ru#/http%3a%2f%2fid.who.int%2ficd%2fentity%2f437815624 (accessed: 30.04.2023).
- Aldinger KA, Lane CJ, Veenstra-Vander Weele J, et al. Patterns of Risk for Multiple Co-Occurring Medical Conditions Replicate Across Distinct Cohorts of Children with Autism Spectrum Disorder. Autism Res. 2015;8(6):771–781. doi: https://doi.org/10.1002/aur.1492
- Casanova MF, Frye RE, Gillberg C, et al. Editorial: Comorbidity and Autism Spectrum Disorder. Front Psychiatry. 2020;11:617395. doi: https://doi.org/10.3389/fpsyt.2020.617395
- Rose S, Niyazov DM, Rossignol DA, et al. Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Mol Diagn Ther. 2018;22(5):571–593. doi: https://doi.org/10.1007/s40291-018-0352-x
- Abruzzo PM, Matté A, Bolotta A, et al. Plasma peroxiredoxin changes and inflammatory cytokines support the involvement of neuro-inflammation and oxidative stress in Autism Spectrum Disorder. J Transl Med. 2019;17(1):332. doi: https://doi.org/10.1186/s12967-019-2076-z
- Mead J, Ashwood P. Evidence supporting an altered immune response in ASD. Immunol Lett. 2015;163(1):49–55. doi: https://doi.org/10.1016/j.imlet.2014.11.006
- Kipnis J. Immune system: The “seventh sense”. J Exp Med. 2018;215(2):397–398. doi: https://doi.org/10.1084/jem.20172295
- McElhanon BO, McCracken C, Karpen S, et al. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics. 2014;133(5):872–883. doi: https://doi.org/10.1542/peds.2013-3995
- Bölte S, Mahdi S, de Vries PJ, et al. The Gestalt of functioning in autism spectrum disorder: Results of the international conference to develop final consensus International Classification of Functioning, Disability and Health core sets. Autism. 2019;23(2):449–467. doi: https://doi.org/ 10.1177/1362361318755522
- Jonsson U, Alaie I, Löfgren Wilteus A, et al. Annual Research Review: Quality of life and childhood mental and behavioural disorders a critical review of the research. J Child Psychol Psychiatry. 2017;58(4):439–469. doi: https://doi.org/10.1111/jcpp.12645
- Levy Y. Commentary: Time to reconceptualize ASD? comments on Happe and Frith (2020) and Sonuga-Barke (2020). J Child Psychol Psychiatr, 2021;62(8):1042–1044. doi: https://doi.org/10.1111/jcpp.13345
- Happé F, Frith U. Annual Research Review: Looking back to look forward — changes in the concept of autism and implications for future research. J Child Psychol Psychiatrу. 2020;61(3):218–232. doi: https://doi.org/10.1111/jcpp.13176
- Grove J, Ripke S, Als TD, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51(3):431–444. doi: https://doi.org/10.1038/s41588-019-0344-8
- Velinov M. Genomic Copy Number Variations in the Autism Clinic-Work in Progress. Front Cell Neurosci. 2019;13:57. doi: https://doi.org/10.3389/fncel.2019.00057
- Panisi C, Guerini FR, Abruzzo PM, et al. Autism Spectrum Disorder from the Womb to Adulthood: Suggestions for a Paradigm Shift. J Pers Med. 2021;11(2):70. doi: https://doi.org/10.3390/jpm11020070
- Rylaarsdam L, Guemez-Gamboa A. Genetic Causes and Modifiers of Autism Spectrum Disorder. Front Cell Neurosci. 2019;13:385. doi: https://doi.org/10.3389/fncel.2019.00385
- Frye RE, Vassall S, Kaur G, et al. Emerging biomarkers in autism spectrum disorder: a systematic review. Ann Transl Med. 2019;7(23):792. doi: https://doi.org/10.21037/atm.2019.11.53
- Mannion A, Leader G. An investigation of comorbid psychological disorders, sleep problems, gastrointestinal symptoms and epilepsy in children and adolescents with autism spectrum disorder: A two year follow-up. Research in Autism Spectrum Disorders. 2016;22:20–33. doi: https://doi.org/10.1016/j.rasd.2015.11.002
- Cristino A, Williams S, Hawi Z, et al. Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Mol Psychiatry. 2014;19(3):294–301. doi: https://doi.org/https://doi.org/10.1038/mp.2013.16
- Bai D, Yip BHK, Windham GC, et al. Association of Genetic and Environmental Factors with Autism in a 5-Country Cohort. JAMA Psychiatry. 2019;76(10):1035–1043. doi: https://doi.org/10.1001/jamapsychiatry.2019.1411
- Phillips NLH, Roth TL. Animal Models and Their Contribution to Our Understanding of the Relationship between Environments, Epigenetic Modifications, and Behavior. Genes (Basel). 2019;10(1):47. doi: https://doi.org/10.3390/genes10010047
- Dall’Aglio L, Muka T, Cecil CAM, et al. The role of epigenetic modifications in neurodevelopmental disorders: A systematic review. Neurosci Biobehav Rev. 2018;94:17–30. doi: https://doi.org/10.1016/j.neubiorev.2018.07.011
- Podobinska M, Szablowska-Gadomska I, Augustyniak J, et al. Epigenetic Modulation of Stem Cells in Neurodevelopment: The Role of Methylation and Acetylation. Front Cell Neurosci. 2017;11:23. doi: https://doi.org/10.3389/fncel.2017.00023
- Vogel Ciernia A, LaSalle J. The landscape of DNA methylation amid a perfect storm of autism aetiologies. Nat Rev Neurosci. 2016;17(7):411–423. doi: https://doi.org/10.1038/nrn.2016.41
- Dupont C, Armant DR, Brenner CA. Epigenetics: Definition, mechanisms and clinical perspective. Semin Reprod Med. 2009;27(5):351–357. doi: https://doi.org/10.1055/s-0029-1237423
- Linnér A, Almgren M. Epigenetic programming — The important first 1000 days. Acta Paediatr. 2020;109(3):443–452. doi: https://doi.org/10.1111/apa.15050
- Chahrour M, Jung SY, Shaw C, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008;320(5880):1224–1229. doi: https://doi.org/10.1126/science.1153252
- Jiang YH, Bressler J, Beaudet AL. Epigenetics and human disease. Annu Rev Genomics Hum Genet. 2004;5:479–510. doi: https://doi.org/10.1146/annurev.genom.5.061903.180014
- Zhao X, Pak C, Smrt RD, et al. Epigenetics and Neural developmental disorders: Washington DC, September 18 and 19, 2006. Epigenetics. 2007;2(2):126–134. doi: https://doi.org/10.4161/epi.2.2.4236
- Emberti Gialloreti L, Mazzone L, Benvenuto A, et al. Risk and Protective Environmental Factors Associated with Autism Spectrum Disorder: Evidence-Based Principles and Recommendations. J Clin Med. 2019;8(2):217. doi: https://doi.org/10.3390/jcm8020217
- Reisinger S, Khan D, Kong E, et al. The poly(I:C)-induced maternal immune activation model in preclinical neuropsychiatric drug discovery. Pharmacol Ther. 2015;149:213–226. doi: https://doi.org/10.1016/j.pharmthera.2015.01.001
- Lombardo MV, Moon HM, Su J, et al. Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder. Mol Psychiatry. 2018;23(4):1001–1013. doi: https://doi.org/10.1038/mp.2017.15
- Conway F, Brown AS. Maternal Immune Activation and Related Factors in the Risk of Offspring Psychiatric Disorders. Front Psychiatry. 2019;10:430. doi: https://doi.org/10.3389/fpsyt.2019.00430
- Raghavan R, Riley AW, Volk H, et al. Maternal Multivitamin Intake, Plasma Folate and Vitamin B12 Levels and Autism Spectrum Disorder Risk in Offspring. Paediatr Perinat Epidemiol. 2018;32(1):100–111. doi: https://doi.org/10.1111/ppe.12414
- Grossi E, Migliore L, Muratori F. Pregnancy risk factors related to autism: An Italian case-control study in mothers of children with autism spectrum disorders (ASD), their siblings and of typically developing children. J Dev Orig Health Dis. 2018;9(4):442–449. doi: https://doi.org/10.1017/S2040174418000211
- Zhang T, Sidorchuk A, Sevilla-Cermeno L, et al. Association of cesarean delivery with risk of neurodevelopmental and psychiatric disorders in the offspring: A systematic review and meta-analysis. JAMA Netw Open. 2019;2(8):e1910236. doi: https://doi.org/10.1001/jamanetworkopen.2019.10236
- Gluckman PD, Hanson MA. Living with the past: Evolution, development, and patterns of disease. Science. 2004;305(5691):1733–1736. doi: https://doi.org/10.1126/science.1095292
- Gluckman PD, Hanson MA, Low FM. The role of developmental plasticity and epigenetics in human health. Birth Defects Res C Embryo Today. 2011;93(1):12–18. doi: https://doi.org/10.1002/bdrc.20198
- Burgio E. Environment and Fetal Programming: The origins of some current “pandemics”. Journal of Pediatric and Neonatal Individualized Medicine. 2015;4(2):е040237. doi: https://doi.org/10.7363/040237
- Monk C, Fernández CR. Neuroscience Advances and the Developmental Origins of Health and Disease Research. JAMA Netw Open. 2022;5(4):e229251. doi: https://doi.org/10.1001/jamanetworkopen.2022.9251
- Idle JR, Gonzalez FJ. Metabolomics. Cell Metab. 2007;6(5):348–351. doi: https://doi.org/10.1016/j.cmet.2007.10.005
- Glinton KE, Elsea SH. Untargeted Metabolomics for Autism Spectrum Disorders: Current Status and Future Directions. Front Psychiatry. 2019;10:647. doi: https://doi.org/10.3389/fpsyt.2019.00647
- Lussu M, Noto A, Masili A, et al. The urinary 1 H-NMR metabolomics profile of an italian autistic children population and their unaffected siblings. Autism Res. 2017;10(6):1058–1066. doi: https://doi.org/10.1002/aur.1748
- Mussap M, Noto A, Fanos V. Metabolomics of autism spectrum disorders: Early insights regarding mammalian-microbial cometabolites. Expert Rev Mol Diagn. 2016;16(8):869–881. doi: https://doi.org/10.1080/14737159.2016.1202765
- Bitar T, Mavel S, Emond P, et al. Identification of metabolic pathway disturbances using multimodal metabolomics in autistic disorders in a Middle Eastern population. J Pharm Biomed Anal. 2018;152:57–65. doi: https://doi.org/10.1016/j.jpba.2018.01.007
- Ogunrinola GA, Oyewale JO, Oshamika OO, et al. The Human Microbiome and Its Impacts on Health. Int J Microbiol. 2020;2020:8045646. doi: https://doi.org/10.1155/2020/8045646
- Kho ZY, Lal SK. The Human Gut Microbiome – A Potential Controller of Wellness and Disease. Front Microbiol. 2018;9:1835. doi: https://doi.org/10.3389/fmicb.2018.01835
- Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–1273. doi: https://doi.org/10.1126/science.1223490
- Taniya MA, Chung H-J, Al Mamun A, et al. Role of Gut Microbiome in Autism Spectrum Disorder and Its Therapeutic Regulation. Front Cell Infect Microbiol. 2022;12:915701. doi: https://doi.org/10.3389/fcimb.2022.915701
- Pivrncova E, Kotaskova I, Thon V. Neonatal Diet and Gut Microbiome Development after C-Section During the First Three Months After Birth: A Systematic Review. Front Nutr. 2022;9:941549. doi: https://doi.org/10.3389/fnut.2022.941549
- Long G, Hu Y, Tao E, et al. The Influence of Cesarean Section on the Composition and Development of Gut Microbiota During the First 3 Months of Life. Front Microbiol. 2021;12:691312. doi: https://doi.org/10.3389/fmicb.2021.691312
- Borre YE, O’Keeffe GW, Clarke G, et al. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol Med. 2014;20(9):509–518. doi: https://doi.org/10.1016/j.molmed.2014.05.002
- Saresella M, Piancone F, Marventano I, et al. Multiple inflammasome complexes are activated in autistic spectrum disorders. Brain Behav Immun. 2016;57:125–133. doi: https://doi.org/10.1016/j.bbi.2016.03.009
- Li Q, Zhou JM. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience. 2016;324:131–139. doi: https://doi.org/10.1016/j.neuroscience.2016.03.013
- Ho P, Ross DA. More Than a Gut Feeling: The Implications of the Gut Microbiota in Psychiatry. Biol Psychiatry. 2017;81(5):e35–e37. doi: https://doi.org/10.1016/j.biopsych.2016.12.018
- Hong J, Jia Y, Pan S, et al. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget. 2016;7(35):56071–56082. doi: https://doi.org/10.18632/oncotarget.11267
- Lanza M, Campolo M, Casili G, et al. Sodium Butyrate Exerts Neuroprotective Effects in Spinal Cord Injury. Mol Neurobiol. 2019;56(6):3937–3947. doi: https://doi.org/10.1007/s12035-018-1347-7
- Kratsman N, Getselter D, Elliott E. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology. 2016;102:136–145. doi: https://doi.org/10.1016/j.neuropharm.2015.11.003
- Liu S, Li E, Sun Z, et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci Rep. 2019;9(1):287. doi: https://doi.org/10.1038/s41598-018-36430-z
- Rose S, Bennuri SC, Davis JE, et al. Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl Psychiatry. 2018;8(1):42. doi: https://doi.org/10.1038/s41398-017-0089-z
- Li Q, Han Y, Dy ABC, et al. The Gut Microbiota and Autism Spectrum Disorders. Front Cell Neurosci. 2017;11:120. doi: https://doi.org/10.3389/fncel.2017.00120
- Сулейманова З.Я., Устинова Н.В., Турти Т.В. Особенности гастроинтестинальных нарушений у детей с расстройствами аутистического спектра: обзор литературы // Педиатрическая фармакология. — 2022. — Т. 19. — № 2. — С. 99–104. [Suleymanova ZY, Ustinova NV, Turti TV. Features of Gastrointestinal Malformations in Children with Autism Spectrum Disorders: Literature Review. Pediatric Pharmacology. 2022;19(2):99–104. (In Russ.)] doi: https://doi.org/10.15690/pf.v19i2.2397
- Soke GN, Maenner MJ, Christensen D, et al. Prevalence of Co-occurring Medical and Behavioral Conditions/ Symptoms among 4- and 8-Year-Old Children with Autism Spectrum Disorder in Selected Areas of the United States in 2010. J Autism Dev Disord. 2018;48(8):2663–2676. doi: https://doi.org/10.1007/s10803-018-3521-1
- Xiong J, Chen S, Pang N, et al. Neurological Diseases with Autism Spectrum Disorder: Role of ASD Risk Genes. Front Neurosci. 2019;13:349. doi: https://doi.org/10.3389/fnins.2019.00349
- Xu G, Snetselaar LG, Jing J, et al. Association of Food Allergy and Other Allergic Conditions with Autism Spectrum Disorder in Children. JAMA Netw Open. 20181;1(2):e180279. doi: https://doi.org/10.1001/jamanetworkopen.2018.0279
- Ellul P, Rosenzwajg M, Peyre H, et al. Regulatory T lymphocytes/ Th17 lymphocytes imbalance in autism spectrum disorders: evidence from a meta-analysis. Mol Autism. 2021;12(1):68. doi: https://doi.org/10.1186/s13229-021-00472-4
- Slawinski BL, Talge N, Ingersoll B, et al. Maternal CMV seropositivity and autism symptoms in children. Am J Reprod Immunol. 2018;79(5):e12840. doi: https://doi.org/10.1111/aji.12840
- Dunn K, Rydzewska Е, Fleminget М, et al. Prevalence of mental health conditions, sensory impairments and physical disability in people with co-occurring intellectual disabilities and autism compared with other people: a cross-sectional total population study in Scotland. BMJ Open. 2020;10(4):e035280. doi: https://doi.org/10.1136/ bmjopen-2019-035280
- Thom RP, Palumbo ML, Keary CJ, et al. Prevalence and factors associated with overweight, obesity, and hypertension in a large clinical sample of adults with autism spectrum disorder. Sci Rep. 2022;12(1):9737. doi: https://doi.org/10.1038/s41598-022-13365-0
- Tromans S, Yao G, Alexander R, et al. The Prevalence of Diabetes in Autistic Persons: A Systematic Review. Clin Pract Epidemiol Ment Health. 2020;16:212–225. doi: https://doi.org/10.2174/1745017902016010212
- Cheng N, Rho JM, Masino SA. Metabolic Dysfunction Underlying Autism Spectrum Disorder and Potential Treatment Approaches. Front Mol Neurosci. 2017;10:34. doi: https://doi.org/10.3389/fnmol.2017.00034
- Hyman SL, Levy SE, Myers SM. Clinical report. Guidance for the clinician in rendering pediatric care. Identification, evaluation, and management of children with autism spectrum disorder. Pediatrics. 2020;145(1):e20193447. doi: https://doi.org/10.1542/peds.2019-3447
- Устинова Н.В., Намазова-Баранова Л.С. Роль педиатра в раннем определении риска развития, диагностике и медицинском сопровождении детей с расстройствами аутистического спектра // Вопросы современной педиатрии. — 2021. — Т. 20. — № 2. — С. 116–121. [Ustinova NV, Namazova-Baranova LS. Role of Pediatrician in Early Risk Evaluation, Diagnosis and Management of Children with Autism Spectrum Disorders. Current Pediatrics. 2021;20(2):116–121. (In Russ.)] doi: https://doi.org/10.15690/vsp.v20i2.2255
- Tartaglione AM, Villani A, Ajmone-Cat MA, et al. Maternal immune activation induces autism-like changes in behavior, neuroinflammatory profile and gut microbiota in mouse offspring of both sexes. Transl Psychiatry. 2022;12(1):384. doi: https://doi.org/10.1038/s41398-022-02149-9
- Noda Y. A Paradigm Shift in Understanding the Pathological Basis of Autism Spectrum Disorder: From the Womb to the Tomb. J Pers Med. 2022;12(10):1622. doi: https://doi.org/10.3390/jpm12101622
- Sundelin HE, Larsson H, Lichtenstein P, et al. Autism and epilepsy: A population-based nationwide cohort study. Neurology. 2016;87(2): 192–197. doi: https://doi.org/10.1212/WNL.0000000000002836
- Mesleh AG, Abdulla SA, El-Agnaf O. Paving the Way toward Personalized Medicine: Current Advances and Challenges in Multi-OMICS Approach in Autism Spectrum Disorder for Biomarkers Discovery and Patient Stratification. J Pers Med. 2021;11(1):41. doi: https://doi.org/10.3390/jpm11010041
- Rose DR, Yang H, Serena G, et al. Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain Behav Immun. 2018;70:354–368. doi: https://doi.org/10.1016/j.bbi.2018.03.025
- Mangiola F, Ianiro G, Franceschi F, et al. Gut microbiota in autism and mood disorders. World J Gastroenterol. 2016;22(1):361–368. doi: https://doi.org/https://doi.org/10.3748/wjg.v22.i1.361
- Finegold SM, Molitoris D, Song Y, et al. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis. 2002;35(Suppl1): S6–S16. doi: https://doi.org/10.1086/341914
- Holingue C, Newill C, Lee LC, et al. Gastrointestinal symptoms in autism spectrum disorder: A review of the literature on ascertainment and prevalence. Autism Res. 2018;11(1):24–36. doi: https://doi.org/10.1002/aur.1854
- Khachadourian V, Mahjani B, Sandin S, et al. Comorbidities in autism spectrum disorder and their etiologies. Transl Psychiatry. 2023;13(1):71. doi: https://doi.org/10.1038/s41398-023-02374-w
- Laje G, Morse R, Richter W, et al. Autism spectrum features in Smith-Magenis syndrome. Am J Med Genet C Semin Med Genet. 2010;154C(4):456–462. doi: https://doi.org/10.1002/ajmg.c.30275
- Hyman SL, Levy SE, Myers SM, Council on children with disabilities, section on developmental and behavioral pediatrics. Identification, Evaluation, and Management of Children with Autism Spectrum Disorder. Pediatrics. 2020;145(1):e20193447. doi: https://doi.org/10.1542/peds.2019-3447
- Žigman T, Petković Ramadža D, Šimić G, et al. Inborn Errors of Metabolism Associated With Autism Spectrum Disorders: Approaches to Intervention. Front Neurosci. 2021;15:673600. doi: https://doi.org/10.3389/fnins.2021.673600
- Scalli LE. Accessibility to Health Care Services for Children with Autism Spectrum Disorders. Walden University; 2018. 105 p.
- Sala R, Amet L, Blagojevic-Stokic N, et al. Bridging the Gap between Physical Health and Autism Spectrum Disorder. Neuropsychiatr Dis Treat. 2020;16:1605–1618. doi: https://doi.org/10.2147/NDT.S251394
- Намазова-Баранова Л.С., Баранов А.А., Вишнева Е.А., и др. 7П-педиатрия — медицина развития и программирования здоровья // Вестник РАМН. — 2021. — Т. 76. — № 6. — С. 622–634. [Namazova-Baranova LS, Baranov A A, Vishneva EA, et al. 7P pediatrics — Medicine of Development and Health Programming. Annals of the Russian Academy of Medical Sciences. 2021;76(6):622–634. (In Russ.)] doi: https://doi.org/10.15690/vramn1756
- Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2014;7(1):17–44. doi: https://doi.org/10.3390/nu7010017
- Berding K, Donovan SM. Diet can impact microbiota composition in children with autism spectrum disorder. Front Neurosci. 2018;12:515. doi: https://doi.org/10.3389/fnins.2018.00515
- Goldsmith JR, Sartor RB. The role of diet on intestinal microbiota metabolism: Downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol. 2014;49(5):785–798. doi: https://doi.org/10.1007/s00535-014-0953-z
- Cusick SE, Georgieff MK. The Role of Nutrition in Brain Development: The Golden Opportunity of the “First 1000 Days”. J Pediatr. 2016;175:16–21. doi: https://doi.org/10.1016/j.jpeds.2016.05.013