Influence of Genetic Factors on Immunopathogenesis and Clinical Phenotypes of ANCA-associated Vasculitis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review presents the recent data on assumed risk factors for the development of ANCA-associated vasculitis (AAV), among which environmental factors, such as climatic, chemical, etc., are of particular interest of researchers. Controversial opinions of various authors on the role of individual causative agents of infectious diseases in the development of AAV are analyzed. The review pays special attention to scientific data on the influence of variants of the structure of genes encoding various components of the immune system on the development of the pathogenetic process of AAV. Up-to-date information on the association of single-nucleotide polymorphisms (SNPs) with the course, risk of development and the likelihood of AAV recurrence is indicated, the most associated of which are genes encoding proteins of the main histocompatibility complex (HLA), a toll-like receptors (TLR`s), as well as an inhibitor of serine proteinases-alpha-antitrypsin (AAT). The analysis of scientific publications describing the molecular mechanism of the development of a pathological focus that forms the conditions for the synthesis of PR3–ANCA and MPO–ANCA complexes characteristic of AAV has been carried out. The data of a number of foreign studies on the relationship of individual SNPs associated with the features of the course of granulomatosis with polyangiitis, microscopic polyangiitis, as well as eosinophilic granulomatosis with polyangiitis are presented and summarized. The review presents current AAV treatment regimens and promising directions for the development of medical care for patients.

Full Text

Restricted Access

About the authors

Natalia V. Vlasenko

Central Research Institute of Epidemiology

Author for correspondence.
Email: vlasenko@cmd.su
ORCID iD: 0000-0002-2388-1483
SPIN-code: 1933-5968

Research Associate

Russian Federation, 3с6, Korolenko str., Moscow, 107076

Nikolay M. Bulanov

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: nmbulanov@gmail.com
ORCID iD: 0000-0002-3989-2590
SPIN-code: 7408-5706

MD, PhD, Assistant Professor

Russian Federation, Moscow

Sergey V. Moiseev

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: moiseev_s_v@staff.sechenov.ru
ORCID iD: 0000-0002-7232-4640
SPIN-code: 3462-7884

MD, PhD, Professor

Russian Federation, Moscow

Tatiana A. Semenenko

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya

Email: meddy@inbox.ru
ORCID iD: 0000-0002-6686-9011
SPIN-code: 8375-2270

MD, PhD, Professor

Russian Federation, Moscow

Stanislav N. Kuzin

Central Research Institute of Epidemiology

Email: kuzin@cmd.su
ORCID iD: 0000-0002-0616-9777
SPIN-code: 1372-7623

MD, PhD, Professor

Russian Federation, Moscow

Vasily G. Akimkin

Central Research Institute of Epidemiology

Email: akimkin@pcr.ms
ORCID iD: 0000-0003-4228-9044
SPIN-code: 4038-7455

MD, PhD, Academician of the RAS

Russian Federation, Moscow

References

  1. Jennette JC. Rapidly progressive crescentic glomerulonephritis. Kidney Int. 2003;63(3):1164–1177. doi: https://doi.org/10.1046/j.1523-1755.2003.00843.x
  2. Travis WD, Colby TV, Lombard C, et al. A clinicopathologic study of 34 cases of diffuse pulmonary hemorrhage with lung biopsy confirmation. Am J Surg Pathol. 1990;14:1112–1125.
  3. Добронравов В.А., Карунная А.В., Казимирчик А.В., Смирнов А.В.. АНЦА-ассоциированные васкулиты с доминирующим поражением почек: клинико-морфологическая презентация и исходы // Нефрология. — 2019. — Т. 23. — № 6. — С. 29–44. [Dobronravov VA, Karunnaya AV, Kazimirchik AV, Smirnov AV. ANCA-associated vasculitis with dominant renal involvement: clinical and morphological presentation and outcomes. Nephrology (Saint-Petersburg). 2019;23(6):29–44. (In Russ.)] doi: https://doi.org/10.36485/1561-6274-2019-236-29-44
  4. Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65(1):1–11. doi: https://doi.org/10.1002/art.37715
  5. Сафаргалиева Л.Х., Фролова Э.Б, Тухватуллина Г.В., и др. Гранулематоз Вегенера // Вестник современной клинической медицины. — 2010. — Т. 3. — Приложение 2. — С. 107–112. [Safargalieva LH, Frolova EB, Tuhvatullina GV, i dr. Granulematoz Vegenera. Vestnik sovremennoj klinicheskoj mediciny. 2010;3(Prilozhenie2):107–112. (In Russ.)]
  6. Kubaisi B, Abu Samra K, Foster CS. Granulomatosis with polyangiitis (Wegener’s disease): An updated review of ocular disease manifestations. Intractable Rare Dis Res. 2016;5(2):61–69. doi: https://doi.org/10.5582/irdr.2016.01014
  7. Altinel Acoglu E, Yazilitas F, Gurkan A, et al. Eosinophilic Granulomatosis with Polyangiitis in a 4-Year-Old Child: Is Montelukast and/or Clarithromycin a Trigger? Arch Iran Med. 2019;22(3):161–163.
  8. Liu X, Wang L, Zhou K, et al. A delayed diagnosis of eosinophilic granulomatosis with polyangiitis complicated with extensive artery occlusion of lower extremities in children: case report and literature review. Pediatr Rheumatol. 2019;17(26). doi: https://doi.org/10.1186/s12969-019-0331-8
  9. Eleftheriou D, Gale H, Pilkington C, et al. Eosinophilic granulomatosis with polyangiitis in childhood: retrospective experience from a tertiary referral centre in the UK. Rheumatology. 2016;55(7):1263–1272. doi: https://doi.org/10.1093/rheumatology/kew029
  10. Mohammad AJ. An update on the epidemiology of ANCA-associated vasculitis. Rheumatology (Oxford). 2020;59(Suppl 3):iii42–iii50. doi: https://doi.org/10.1093/rheumatology/keaa089
  11. McDermott G, Fu X, Stone JH, et al. Association of Cigarette Smoking with Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. JAMA Intern Med. 2020;180(6):870–876. doi: https://doi.org/10.1001/jamainternmed.2020.0675
  12. Kubaisi B, Abu Samra K, Foster CS. Granulomatosis with polyangiitis (Wegener’s disease): An updated review of ocular disease manifestations. Intractable Rare Dis Res. 2016;5(2):61–69. doi: https://doi.org/10.5582/irdr.2016.01014
  13. Gómez-Puerta JA, Gedmintas L, Costenbader KH. The association between silica exposure and development of ANCA-associated vasculitis: systematic review and meta-analysis. Autoimmun Rev. 2013;12(12):1129–1135. doi: https://doi.org/10.1016/j.autrev.2013.06.016
  14. Lane SE, Watts RA, Bentham G, Innes NJ, Scott DG. Are environmental factors important in primary systemic vasculitis? A case-control study. Arthritis Rheum. 2003;48(3):814–823. doi: https://doi.org/10.1002/art.10830
  15. Li J, Cui Z, Long JY, et al. The frequency of ANCA-associated vasculitis in a national database of hospitalized patients in China. Arthritis Res Ther. 2018;20(1):226. doi: https://doi.org/10.1186/s13075-018-1708-7
  16. Pearce FA, Lanyon PC, Grainge MJ, et al. Incidence of ANCA-associated vasculitis in a UK mixed ethnicity population. Rheumatology (Oxford). 2016;55(9):1656–1663. doi: https://doi.org/10.1093/rheumatology/kew232
  17. Watts RA, Mahr A, Mohammad AJ, et al. Classification, epidemiology and clinical subgrouping of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Nephrol Dial Transplant. 2015;30(Suppl 1):i14–i22. doi: https://doi.org/10.1093/ndt/gfv022
  18. Dartevel A, Chaigne B, Moachon L, et al. Levamisole-induced vasculopathy: A systematic review. Semin Arthritis Rheum. 2019;48(5):921–926. doi: https://doi.org/10.1016/j.semarthrit.2018.07.010
  19. Rozina T, Fastovets S, Lee O, et al. D-penicillamine-induced autoimmune disorders. Dig Liver Dis. 2019;51(12):1741–1742. doi: https://doi.org/10.1016/j.dld.2019.08.025
  20. Popa ER, Stegeman CA, Kallenberg CG, et al. Staphylococcus aureus and Wegener’s granulomatosis. Arthritis Res. 2002;4(2):77–79. doi: https://doi.org/10.1186/ar392
  21. Ooi JD, Jiang JH, Eggenhuizen PJ, et al. A plasmid-encoded peptide from Staphylococcus aureus induces anti-myeloperoxidase nephritogenic autoimmunity. Nat Commun. 2019;10(1):3392. doi: https://doi.org/10.1038/s41467-019-11255-0
  22. Besada E, Koldingsnes W, Nossent JC. Staphylococcus Aureus carriage and long-term Rituximab treatment for Granulomatosis with polyangiitis. Peer J. 2015;3:e1051. doi: https://doi.org/10.7717/peerj.1051
  23. Bossuyt X, Cohen Tervaert JW, et al. Position paper: Revised 2017 international consensus on testing of ANCAs in granulomatosis with polyangiitis and microscopic polyangiitis. Nat Rev Rheumatol. 2017;13(11):683–692. doi: https://doi.org/10.1038/nrrheum.2017.140
  24. Moiseev S, Bossuyt X, Arimura Y, et al. International Consensus on ANCA Testing in Eosinophilic Granulomatosis with Polyangiitis. Am J Respir Crit Care Med. 2020;202(10):1360–1372. doi: https://doi.org/10.1164/rccm.202005-1628SO
  25. Almaani S, Fussner LA, Brodsky S, et al. ANCA-Associated Vasculitis: An Update. J Clin Med. 2021;10(7):1446. doi: https://doi.org/10.3390/jcm10071446
  26. Takai T. Fc receptors and their role in immune regulation and autoimmunity. J Clin Immunol. 2005;25(1):1–18. doi: https://doi.org/10.1007/s10875-005-0353-8
  27. Nakazawa D, Masuda S, Tomaru U, Ishizu A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat Rev Rheumatol. 2019;15(2):91–101. doi: https://doi.org/10.1038/s41584-018-0145-y
  28. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–287. doi: https://doi.org/10.1038/nm.4294
  29. Aringer M, Costenbader K, Daikh D, et al. European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019;71(9):1400–1412. doi: https://doi.org/10.1002/art.40930
  30. Zhao X, Wen Q, Qiu Y, et al. Clinical and pathological characteristics of ANA/anti-dsDNA positive patients with antineutrophil cytoplasmic autoantibody-associated vasculitis. Rheumatol Int. 2021;41:455–462. doi: https://doi.org/10.1007/s00296-020-04704-3
  31. Yung S, Chan TM. Mechanisms of Kidney Injury in Lupus Nephritis — the Role of Anti-dsDNA Antibodies. Front Immunol. 2015;6:475. doi: https://doi.org/10.3389/fimmu.2015.00475
  32. Celhar T, Magalhães R, Fairhurst A-M. TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunologic Research. 2012;53(1–3):58–77. doi: https://doi.org/10.1007/s12026-012-8270-1
  33. Moiseev S, Lee JM, Zykova A, et al. The alternative complement pathway in ANCA-associated vasculitis: further evidence and a meta-analysis. Clin Exp Immunol. 2020;202(3):394–402. doi: https://doi.org/10.1111/cei.13498
  34. Lyons PA, Smith KGC. L31. A GWAS in ANCA-associated vasculitis: Will genetics help re-define clinical classification? La Presse Médicale. 2013;42(4):589–591. doi: https://doi.org/10.1016/j.lpm.2013.02.303
  35. Merkel PA, Xie G, Monac PA, et al. Vasculitis Clinical Research Consortium. Identification of Functional and Expression Polymorphisms Associated with Risk for Antineutrophil Cytoplasmic Autoantibody-Associated Vasculitis. Arthritis & Rheumatology (Hoboken, N.J.). 2017;69(5):1054–1066. doi: https://doi.org/10.1002/art.40034
  36. Rahmattulla C, Mooyaart AL, van Hooven D, et al. Genetic variants in ANCA-associated vasculitis: a meta-analysis. Annals of the Rheumatic Diseases. 2015;75(9):1687–1692. doi: https://doi.org/10.1136/annrheumdis-2015-207601
  37. Lee KS, Kronbichler A, Pereira Vasconcelos DF, et al. Genetic Variants in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis: A Bayesian Approach and Systematic Review. J Clin Med. 2019;8(2):266. doi: https://doi.org/10.3390/jcm8020266
  38. Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol. 2016;39(1):98–106. doi: https://doi.org/10.1097/COC.0000000000000239
  39. Chambers CA, Cado D, Truong T, et al. Thymocyte development is normal in CTLA-4-deficient mice. Proc Natl Acad Sci USA. 1997;94(17):9296–9301. doi: https://doi.org/10.1073/pnas.94.17.9296
  40. Tivol EA, Borriello F, Schweitzer AN, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3(5):541–547. doi: https://doi.org/10.1016/1074-7613(95)90125-6
  41. Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995;270(5238):985–988. doi: https://doi.org/10.1126/science.270.5238.985
  42. Klocke K, Sakaguchi Sh, Holmdahl R, et al. Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc Natl Acad Sci USA. 2016;113(17):E2383–E2392. doi: https://doi.org/10.1073/pnas.1603892113
  43. Tang F., Du X., Liu M, et al. Anti-CTLA-4 antibodies in cancer immunotherapy: selective depletion of intratumoral regulatory T cells or checkpoint blockade? Cell Biosci. 2018;8:30. doi: https://doi.org/10.1186/s13578-018-0229-z
  44. Zhao Y, Yang W, Huang Y, et al. Evolving Roles for Targeting CTLA-4 in Cancer Immunotherapy. Cell Physiol Biochem. 2018;47(2):721–734. doi: https://doi.org/10.1159/000490025
  45. Чикилева И.О., Шубина И.Ж., Самойленко И.В., и др. Влияние антител к CTLA-4 и PD-1 на содержание их рецепторов мишеней // Медицинская иммунология. — 2019. — Т. 21. — № 1. — С. 59–68. [Chikileva IO, Shubina IZh, Samoylenko IV, et al. Influence of antibodiesagainst CTLA-4 and PD-1 upon quantities of their target receptors. Medical Immunology (Russia) = Meditsinskaya Immunologiya. 2019;21(1):59–68. (In Russ).] doi: https://doi.org/10.15789/1563-0625-2019-1-59-68
  46. Kamesh L, Heward JM, Williams JM, et al. CT60 and +49 polymorphisms of CTLA 4 are associated with ANCA-positive small vessel vasculitis. Rheumatology. 2009;48(12):1502–1505. doi: https://doi.org/10.1093/rheumatology/kep280
  47. Ting WH, Chien MN, Lo FS, et al. Association of Cytotoxic T-Lymphocyte-Associated Protein 4 (CTLA4) Gene Polymorphisms with Autoimmune Thyroid Disease in Children and Adults: Case-Control Study. PLoS One. 2016;11(4):e0154394. doi: https://doi.org/10.1371/journal.pone.0154394
  48. Patel H, Mansuri MS, Singh M, et al. Association of Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) and Thyroglobulin (TG) Genetic Variants with Autoimmune Hypothyroidism. PLoS One. 2016;11(3):e0149441. doi: https://doi.org/10.1371/journal.pone.0149441
  49. Berce V, Potocnik U. Functional polymorphism in CTLA4 gene influences the response to therapy with inhaled corticosteroids in Slovenian children with atopic asthma. Biomarkers. 2010;15(2):158–166. doi: https://doi.org/10.3109/13547500903384318
  50. Carr EJ, Niederer HA, Williams J, et al. Confirmation of the genetic association of CTLA4 and PTPN22 with ANCA-associated vasculitis. BMC Med Genet. 2009;10:121. doi: https://doi.org/10.1186/1471-2350-10-121
  51. Xie G, Roshandel D, Sherva R, et al. Association of granulomatosis with polyangiitis (Wegener’s) with HLA-DPB1*04 and SEMA6A gene variants: evidence from genome-wide analysis. Arthritis Rheum. 2013;65(9):2457–2468. doi: https://doi.org/10.1002/art.38036
  52. Lyons PA, Rayner TF, Trivedi S, et al. Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012;367(3):214–223. doi: https://doi.org/10.1056/NEJMoa1108735
  53. Santiago-Raber ML, Baudino L, Izui S. Emerging roles of TLR7 and TLR9 in murine SLE. J Autoimmun. 2009;33(3–4):231–238. doi: https://doi.org/10.1016/j.jaut.2009.10.001
  54. Santiago-Raber ML, Dunand-Sauthier I, Wu T, et al. Critical role of TLR7 in the acceleration of systemic lupus erythematosus in TLR9-deficient mice. J Autoimmun. 2010;34(4):339–348. doi: https://doi.org/10.1016/j.jaut.2009.11.001
  55. Fillatreau S, Manfroi B, Dörner T. Toll-like receptor signalling in B cells during systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17:98–108. doi: https://doi.org/10.1038/s41584-020-00544-4
  56. Sakata K, Nakayamada S, Miyazaki Y, et al. Up-Regulation of TLR7-Mediated IFN-α Production by Plasmacytoid Dendritic Cells in Patients With Systemic Lupus Erythematosus. Front Immunol. 2018;9:1957. doi: https://doi.org/10.3389/fimmu.2018.01957
  57. Wang Y, Liang J, Qin H, et al. Elevated expression of miR-142-3p is related to the pro-inflammatory function of monocyte-derived dendritic cells in SLE. Arthritis Res Ther. 2016;18(1):263. doi: https://doi.org/10.1186/s13075-016-1158-z
  58. Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol. 2006;6(11):823–835. doi: https://doi.org/10.1038/nri1957
  59. Capolunghi F, Rosado MM, Cascioli S, et al. Pharmacological inhibition of TLR9 activation blocks autoantibody production in human B cells from SLE patients. Rheumatology (Oxford). 2010;49(12):2281–2289. doi: 10.1093/rheumatology/keq226
  60. Nakano S, Morimoto S, Suzuki J, et al. Role of pathogenic auto-antibody production by Toll-like receptor 9 of B cells in active systemic lupus erythematosus. Rheumatology (Oxford). 2008;47(2):145–149. doi: https://doi.org/10.1093/rheumatology/kem327
  61. Chen M, Zhang W, Xu W, et al. Blockade of TLR9 signaling in B cells impaired anti-dsDNA antibody production in mice induced by activated syngenic lymphocyte-derived DNA immunization. Mol Immunol. 2011;48(12–13):1532–1539. doi: https://doi.org/10.1016/j.molimm.2011.04.016
  62. Werwitzke S, Trick D, Kamino K, et al. Inhibition of lupus disease by anti-double-stranded DNA antibodies of the IgM isotype in the (NZB x NZW)F1 mouse. Arthritis Rheum. 2005;52(11):3629–3638. doi: https://doi.org/10.1002/art.21379
  63. Fillatreau S, Manfroi B, Dörner T. Toll-like receptor signalling in B cells during systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17:98–108. doi: https://doi.org/10.1038/s41584-020-00544-4
  64. Celhar T, Magalhães R, Fairhurst A-M. TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunologic Research. 2012;53(1–3):58–77. doi: https://doi.org/10.1007/s12026-012-8270-1
  65. Husmann CA, Holle JU, Moosig F, et al. Genetics of toll like receptor 9 in ANCA associated vasculitides. Annals of the Rheumatic Diseases. 2013;73(5):890–896. doi: https://doi.org/10.1136/annrheumdis-2012-202803
  66. Ito A, Ota M, Katsuyama Y, et al. Lack of association of Toll-like receptor 9 gene polymorphism with Behçet’s disease in Japanese patients. Tissue Antigens. 2007;70(5):423–426. doi: https://doi.org/10.1111/j.1399-0039.2007.00924.x
  67. Shahin RMH, El Khateeb E, Khalifa RH, et al. Contribution of Toll-Like Receptor 9 Gene Single-Nucleotide Polymorphism to Systemic Lupus Erythematosus in Egyptian Patients. Immunological Investigations. 2016;45(3):235–242. doi: https://doi.org/10.3109/08820139.2015.1137934
  68. Sada T, Ota M, Katsuyama Y, et al. Association analysis of Toll-like receptor 7 gene polymorphisms and Behçet’s disease in Japanese patients. Human Immunology. 2011;72(3):269–272. doi: https://doi.org/10.1016/j.humimm.2010.12.007
  69. Raafat II, El Guindy N, Shahin RMH, et al. Toll-like receptor 7 gene single nucleotide polymorphisms and the risk for systemic lupus erythematosus: a case-control study. Einzelnukleotidpolymorphismen im Toll-like-receptor-7-Gen (TLR7) und das Risiko eines systemischen Lupus erythematodes: eine Fall-Kontroll-Studie. Z Rheumatol. 2018;77(5):416–420. doi: https://doi.org/10.1007/s00393-017-0283-7
  70. Owen CA, Campbell EJ. The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol. 1999;65(2):137–150. doi: https://doi.org/10.1002/jlb.65.2.137
  71. Jerke U, Hernandez DP, Beaudette P, et al. Neutrophil serine proteases exert proteolytic activity on endothelial cells. Kidney Int. 2015;88(4):764–775. doi: https://doi.org/10.1038/ki.2015.159
  72. Owen CA, Campbell EJ. The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol. 1999;65(2):137–150. doi: https://doi.org/10.1002/jlb.65.2.137
  73. Joosten LA, Netea MG, Fantuzzi G, et al. Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1beta. Arthritis Rheum. 2009;60(12):3651–3662. doi: https://doi.org/10.1002/art.25006
  74. Kessenbrock K, Fröhlich L, Sixt M, et al. Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J Clin Invest. 2008;118(7):2438–2447. doi: https://doi.org/10.1172/JCI34694
  75. Korkmaz B, Lesner A, Guarino C, et al. Inhibitors and Antibody Fragments as Potential Anti-Inflammatory Therapeutics Targeting Neutrophil Proteinase 3 in Human Disease. Pharmacol Rev. 2016;68(3):603–630. doi: https://doi.org/10.1124/pr.115.012104
  76. Witko-Sarsat V, Lesavre P, Lopez S, et al. A large subset of neutrophils expressing membrane proteinase 3 is a risk factor for vasculitis and rheumatoid arthritis. J Am Soc Nephrol. 1999;10(6):1224–1233.
  77. Ciavatta DJ, Yang J, Preston GA, et al. Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA vasculitis. J Clin Invest. 2010;120(9):3209–3219. doi: https://doi.org/10.1172/JCI40034
  78. Jones BE, Yang J, Muthigi A, et al. Gene-Specific DNA Methylation Changes Predict Remission in Patients with ANCA-Associated Vasculitis. J Am Soc Nephrol. 2017;28(4):1175–1187. doi: https://doi.org/10.1681/ASN.2016050548
  79. Lewis EC, Mizrahi M, Toledano M, et al. alpha1-Antitrypsin monotherapy induces immune tolerance during islet allograft transplantation in mice. Proc Natl Acad Sci USA. 2008;105(42):16236–16241. doi: https://doi.org/10.1073/pnas.0807627105
  80. Srinivasan L, Harris MC, Kilpatrick LE. Cytokines and Inflammatory Response in the Fetus and Neonate. Fetal and Neonatal Physiology. 2017;1241–1254.e4. doi: https://doi.org/10.1016/b978-0-323-35214-7.00128-1
  81. Seixas S, Marques PI. Known Mutations at the Cause of Alpha-1 Antitrypsin Deficiency an Updated Overview of SERPINA1 Variation Spectrum. Appl Clin Genet. 2021;14:173–194. doi: https://doi.org/10.2147/TACG.S257511
  82. Mahr AD, Edberg JC, Stone JH, et al. Alpha₁-antitrypsin deficiency-related alleles Z and S and the risk of Wegener’s granulomatosis. Arthritis Rheum. 2010;62(12):3760–3767. doi: https://doi.org/10.1002/art.27742
  83. Li W, Huang H, Cai M, et al. Antineutrophil Cytoplasmic Antibody-Associated Vasculitis Update: Genetic Pathogenesis. Front Immunol. 2021;12:624848. doi: https://doi.org/10.3389/fimmu.2021.624848
  84. Новиков П.И., Моисеев С.В., Кузнецова Е.И., и др. Изменение клинического течения и прогноза гранулематоза с полиангиитом (Вегенера): результаты 40-летнего наблюдения // Клиническая фармакология и терапия. — 2014. — Т. 23. — № 1. — С. 32–37. [Novikov PI, Moiseev SV, Kuznecova EI, et al. Izmenenie klinicheskogo techenija i prognoza granulematoza s poliangiitom (Vegenera): rezul’taty 40-letnego nabljudenija. Klinicheskaja farmakologija i terapija = Clinical Pharmacology and Therapy. 2014;23(1):32–37. (In Russ).]
  85. Yates M, Watts RA, Bajema IM, et al. EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis. Practice Guideline Ann Rheum Dis. 2016;75(9):1583–1594. doi: https://doi.org/10.1136/annrheumdis-2016-209133
  86. Буланов Н.М., Козловская Н.Л., Тао Е.А., и др. Современные подходы к лечению АНЦА-ассоциированных васкулитов с поражением почек с позиций медицины, основанной на доказательствах // Клиническая фармакология и терапия. — 2020. — Т. 29. — № 4. — С. 72–84. [Bulanov NM, Kozlovskaya NL, Tao EA, et al. Evidence-based treatment of ANCA-associated vasculitis with kidney involvement Sovremennye podhody k lecheniju ANCA-associirovannyh vaskulitov s porazheniem pochek s pozicij mediciny, osnovannoj na dokazatel’stvah. Klinicheskaja farmakologija i terapija = Clinical Pharmacology and Therapy. 2020;29(4):72–84. (In Russ).] doi: 10.32756/0869-5490-2020-4-72-84
  87. Kelley JM, Monach PA, Ji C, et al. IgA and IgG antineutrophil cytoplasmic antibody engagement of Fc receptor genetic variants influences granulomatosis with polyangiitis. Proc Natl Acad Sci USA. 2011;108(51):20736–20741. doi: https://doi.org/10.1073/pnas.1109227109
  88. Robledo G, Márquez A, Dávila-Fajardo CL, et al. Association of the FCGR3A-158F/V gene polymorphism with the response to rituximab treatment in Spanish systemic autoimmune disease patients. DNA Cell Biol. 2012;31(12):1671–1677. doi: https://doi.org/10.1089/dna.2012.1799
  89. Jayne DRW, Bruchfeld AN, Harper L, et al. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis. J Am Soc Nephrol. 2017;28(9):2756–2767. doi: https://doi.org/10.1681/ASN.2016111179

Supplementary files

There are no supplementary files to display.


Copyright (c) 2021 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies