Population Pharmacokinetics of Meropenem in Preterm Infants

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Background. Meropenem, a broad spectrum carbapenem antibiotic, is often used for newborns despite of limited data available on neonatal pharmacokinetics. Due to pharmacokinetic and pharmacodynamic differences as well as to significant changes in the human body related to growth and maturation of organs and systems, direct scaling and dosing extrapolation from adults or older children with adjustment on patient’s weight can result in increased risk of toxicity or treatment failures. Aims — to evaluate the pharmacokinetics of meropenem in premature neonates based on therapeutic drug monitoring data in real clinical settings. Materials. Of 53 pre-term neonates included in the pharmacokinetic/pharmacodynamic analysis, in 39 (73.6%) patients, gestational age ranged from 23 to 30 weeks. Population and individual pharmacokinetic parameter values were estimated by the NPAG program from the Pmetrics package based on peak-trough therapeutic drug monitoring. Samples were assayed by high-performance liquid chromatography. One-compartment pharmacokinetic model with zero-order input and first-order elimination was used to fit concentration data and to predict pharmacokinetic parameter (%T > MIC of free drug) for virtual “patients” with simulated fast, moderate and slow meropenem elimination “received” different dosage by minimum inhibitory concentration (MIC) level. Univariate and multivariate regression analysis was used to evaluate the influence of patient’s covariates (gestational age, postnatal age, postconceptual age, body weight, creatinine clearance calculated by Schwartz formula, etc) on estimated meropenem pharmacokinetic parameters. Results. The identified population pharmacokinetic parameters of meropenem in pre-term newborns (elimination half-lives T1/2 = 1.93 ± 0.341 h; clearance CL = 0.26 ± 0.085 L/h/ kg; volume of distribution V = 0.71 ± 0.22 L/h) were in good agreement with those published in the literature for adults, neonates and older children. Pharmacokinetic/pharmacodynamic modeling demonstrated that a meropenem dosage regimen of 90 mg/kg/day administered using prolonged 3-hour infusion every 8 hours should be considered as potentially effective therapy if nosocomial infections with resistant organisms (MIC ≥ 8 mg/L) are treated. Conclusions. Neonates and especially pre-term neonates have a great pharmacokinetic variability. Meropenem dosing in premature newborns derived from population pharmacokinetic/pharmacodynamic model can partly overcome the variability, but not all pharmacokinetic variability can be explained by covariates in a model. Further personalizing based on Bayesian forecasting approach and a patient’s therapeutic drug monitoring data can help to achieve desired pharmacodynamic target.

Full Text

Restricted Access

About the authors

Irina B. Bondareva

Peoples’ Friendship University of Russia

Author for correspondence.
Email: i_bondareva@yahoo.com
ORCID iD: 0000-0002-8436-8931
SPIN-code: 1631-3470

PhD in Biology, Professor

Russian Federation, 6, Miklukho-Maklaya st., 117198, Moscow

Sergey K. Zyryanov

Peoples’ Friendship University of Russia; City Clinical Hospital No. 24

Email: zyryanov-sk@rudn.ru
ORCID iD: 0000-0002-6348-6867
SPIN-code: 2725-9981

MD, PhD, Professor

Russian Federation, 6, Miklukho-Maklaya st., 117198, Moscow; Moscow

Aleksandra M. Kazanova

Peoples’ Friendship University of Russia

Email: kazanova.alex@yandex.ru
ORCID iD: 0000-0003-2324-0069
SPIN-code: 6277-6484

PhD in Pharmacy, Assistant

Russian Federation, 6, Miklukho-Maklaya st., 117198, Moscow


  1. Приказ Минздравсоцразвития России от 27.12.2011 № 1687н (ред. от 13.09.2019) «О медицинских критериях рождения, форме документа о рождении и порядке его выдачи». [Order of the Ministry of Health and Social Development of Russia of December 27, 2011 No. 1687n (as amended on September 13, 2019) “O medicinskih kriterijah rozhdenija, forme dokumenta o rozhdenii i porjadke ego vydachi” (In Russ.)]. Available from: http://www.consultant.ru/document/cons_doc_LAW_127424/ (accessed: 17.08.2020).
  2. De Keukeleire S, Borrey D, Decaluwe W, Reynders M. Therapeutic drug monitoring of meropenem in neonate with necrotizing enterocolitis: a challenge. Case Rep Infect Dis. 2016:6207487. doi: https://doi.org/10.1155/2016/6207487
  3. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo R. Carbapenems: Past, Present, and Future. Antimicrob Agents Chemother. 2011;55(11):4943–4960. doi: https://doi.org/10.1128/AAC.00296-11
  4. Van den Anker JN, Pokorna P, Kinzig-Schippers M, et al. Meropenem pharmacokinetics in the newborn. Antimicrob Agents Chemother. 2009;53(9):3871–3879. doi: https://doi.org/10.1128/AAC.00351-09
  5. Van Enk JG, Touw DJ, Lafeber HN. Pharmacokinetics of meropenem in preterm neonates. Ther Drug Monit. 2001;23(3):198–201. doi: https://doi.org/10.1097/00007691-200106000-00003
  6. Pacifici GM. Clinical pharmacology of meropenem in infants and children. Clin Med Invest. 2019;4:1–9. doi: https://doi.org/10.15761/CMI.1000178
  7. Определение чувствительности микроорганизмов к антимикробным препаратам: клинические рекомендации. — Смоленск: Межрегиональная ассоциация поклинической микробиологии и антимикробной химиотерапии, 2018. —206 с. [Opredelenie chuvstvitel’nosti mikroorganizmov k antimikrobnym preparatam: Klinicheskie rekomendacii. Smolensk: Mezhregional’naya associaciya poklinicheskoj mikrobiologii i antimikrobnoj himioterapii; 2018. — 206 р. (In Russ.)]. Available from: http://www.antibiotic.ru/minzdrav (accessed: 17.08.2020).
  8. Lu H, Rosenbaum S. Developmental Pharmacokinetics in Pediatric Populations. J Pediatr Pharmacol Ther. 2014;19(4):262–276. doi: https://doi.org/10.5863/1551-6776-19.4.262
  9. Johnson JK, Laughon MM. Antimicrobial agent dosing in infants. Clinical Therapeutics. 2016;38(9):1948–1960. doi: https://doi.org/10.1016/j.clinthera.2016.06.017
  10. Germovsek E, Barker C, Sharland M, Standing JF. Pharmacokinetic-pharmacodynamic modeling in pediatric drug development, and the importance of standardized scaling of clearance. Clin Pharmacokinet. 2019;58(1):39–52. doi: https://doi.org/10.1007/s40262-018-0659-0
  11. Anderson BJ, Holford NHG. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug metabolism and pharmacokinetics. 2009;24(1):25–36. doi: https://doi.org/10.2133/dmpk.24.25
  12. Germovsek E, Lutsar I, Kipper K, et al. Plasma and CSF pharmacokinetics of meropenem in neonates and young infants: results from the NeoMero studies. J Antimicrob Chemother. 2018;73(7):1908–1916. doi: https://doi.org/10.1093/jac/dky128
  13. Ohata Y, Tomita Y, Nakayama M, et al. Optimal dosage regimen of meropenem for pediatric patients based on pharmacokinetic/pharmacodynamic consideration. Drug Metab Pharmacokinet. 2011;26(5):523–531. doi: https://doi.org/10.2133/dmpk.dmpk-11-rg-027
  14. Padari H, Metsvaht T, Kõrgvee L, et al. Short versus long infusion of meropenem in very-low-birth-weight neonates. Antimicrob Agents Chemother. 2012;56(9):4760–4764. doi: https://doi.org/10.1128/AAC.00655-12
  15. Казанова А.М., Степанова Е.С., Макаренкова Л.М., и др. Разработка и валидация методики количественного определения меропенема в плазме крови для терапевтического лекарственного мониторинга // Химико-фармацевтический журнал. — 2020. — № 4. — С. 56–60. [Kazanova AM, Stepanova ES, Makarenkova LM, et al. Development and Validation of Method for the Quantitative Determination of Meropenem in Human Blood Plasma for Therapeutic Drug Monitoring. Himiko-Farmacevticheskij Zhurnal. 2020;4:56–60. (In Russ.)]. doi: https://doi.org/10.30906/0023-1134-2020-54-4-56-60
  16. Jelliffe RW, Neely М. Individualized drug therapy for patients: Basic foundations, relevant software and clinical applications. Academic Press; 2016.
  17. Сергиенко В.И., Джеллифф Р., Бондарева И.Б. Прикладная фармакокинетика: основные положения и клиническое применение. — М.: Изд-во Рос. акад. мед. наук, 2003. — 208 с. [Sergienko V I, Dzhelliff R, Bondareva IB. Prikladnaya farmakokinetika: osnovnye polozheniya i klinicheskoe primenenie. Moscow: Ros. akad. med. nauk; 2003. 208 p. (In Russ.)]
  18. Brion LP, Fleischman АR, McCarton C, Schwartz GJ. A simple estimate of glomerular filtration rate in low birth weight infants during the first year of life: noninvasive assessment of body composition and growth. J Pediatr. 1986;109(4):698–707. doi: https://doi.org/10.1016/s0022-3476(86)80245-1
  19. Pacifici GM. Clinical Pharmacology of Meropenem in Neonates: Effects and Pharmacokinetics. Int J Pediatr. 2016;4(11):3925–3939. doi: https://doi.org/10.22038/ijp.2016.7850
  20. Moon YSK, Chung KC, Gill M. Pharmacokinetics of Meropenem in Animals, Healthy Volunteers, and Patients. Clinical Infectious Disease. 1997;24(Suppl 2):249–255.
  21. Blumer JL, Reed MD, Kearns GL, et al. Sequential, single-dose pharmacokinetic evaluation of meropenem in hospitalized infants and children. Antimicrob Agents Chemother. 1995;39(8):1721–1725.
  22. Leroy A, Fillastre JP, EtienneI, et al. Pharmacokinetics of meropenem in subjects with renal insufficiency. Eur J Clin Pharmacol. 1992;42(5):535–538. doi: https://doi.org/10.1007/BF00314864
  23. Ljungberg B, Nilsson-Ehle I. Pharmacokinetics of meropenem and its metabolite in young and elderly healthy men. Antimicrob Agents Chemother. 1992;36(7):1437–1440. doi: https://doi.org/10.1128/aac.36.7.1437
  24. Bradley JS, Sauberan JB, Ambrose PG. Meropenem pharmacokinetics, pharmacodynamics, and Monte Carlo simulation in the neonate. Pediatr Infect Dis J. 2008;27(9):794–799. doi: https://doi.org/10.1097/INF.0b013e318170f8d2
  25. Smith PB, Cohen-Wolkowiez M, Castro LM. Population pharmacokinetics of meropenem in plasma and cerebrospinal fluid of infants with suspected or complicated intra-abdominal infections. Pediatr Infect Dis J. 2011;30(10):844–849. doi: https://doi.org/10.1097/INF.0b013e31822e8b0b

Supplementary files

Supplementary Files
1. Fig 1. Marginal distributions of the values of the pharmacokinetic parameters of meropenem (linear single-chamber model) in the population of premature newborns, estimated using the Bayesian approach (NPAG program)

Download (97KB)
2. Fig 2. The ratio of the concentration values of meropenem predicted by the model based on population mean values (A) and estimated individual values (B) (NPAG program)

Download (235KB)
3. Fig 3. Modeled values of the pharmacodynamic index -% T> MIC - for different levels of MIC, depending on the dosage regimens and values of the clearance of meropenem in the patient: A - MIC = 2 mg / l; B - MIC = 8 mg / l. Dosing modes: 1, 2 - 40 mg / kg / day, 2 hours, interval 8 hours (1), 12 hours (2); 3, 4 - 40 mg / kg / day, 3 hours, interval 8 hours (3), 12 hours (4); 5, 6 - 60 mg / kg / day, 2 hours, interval 8 hours (5), 12 hours (6); 7, 8 - 60 mg / kg / day, 3 hours, interval 8 hours (7), 12 hours (8); 9 - 90 mg / kg / day, 3 hours, interval 8 hours

Download (249KB)
4. Fig 4. Simulated values of the pharmacodynamic index -% T> MIC - for a dosing regimen of 90 mg / kg / day with an injection interval of 8 hours and a 3-hour infusion, depending on different values of the patient's clearance of meropenem and different levels of BMD

Download (104KB)

Copyright (c) 2021 "Paediatrician" Publishers LLC

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies