Parathyroid Hormone in the Regulation of Bone Growth and Resorption in Health and Disease

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Parathyroid hormone (PTH) is a key hormone responsible for regulation of calcium homeostasis in the body. Since the main body calcium depot is bone tissue, PTH has a decisive effect on its homeostasis. In this case, the hormone can activate both bone formation and resorption. Thus, PTH can ensure the conjugation of anabolic and catabolic processes, which is necessary for the renewal of bone tissue, which is had to function under constant mechanical stress. At the same time, the use of PTH in medical practice is rather small, despite its high potential as a basis for the treatment of various pathologies associated with impaired bone homeostasis. Presented review, describes the intracellular signaling cascades and molecular mechanisms that underlie the action of PTH on bone tissue cells, and intracellular signaling cascades are described. A separate section examines the cellular mechanisms of the action of PTH on bone homeostasis, discusses how the effect of the hormone on different types of cells provides an interface between the processes of synthesis and resorption. In addition, the review examines diseases associated with impaired bone homeostasis, as well as the role of PTH and impaired signaling in their etiology.

Full Text

Restricted Access

About the authors

Maria V. Vorontsova

Lomonosov Moscow State University; Enocrinology Research Centre

Email: maria.v.vorontsova@mail.ru
ORCID iD: 0000-0002-9124-294X
SPIN-code: 4168-6851
ResearcherId: Y-8894-2018

MD, PhD

Russian Federation, 27-10, Lomonosovsky av., 119991, Moscow; Moscow

Konstantin Y. Kulebyakin

Lomonosov Moscow State University

Email: konstantin-kuleb@mail.ru
ORCID iD: 0000-0001-6954-5787
SPIN-code: 7573-8527
Scopus Author ID: 54400164600
ResearcherId: B-4292-2012

PhD in Biology

Russian Federation, 27-10, Lomonosovsky av., 119991, Moscow

Nadezhda V. Makazan

Enocrinology Research Centre

Author for correspondence.
Email: nmakazan@yandex.ru
ORCID iD: 0000-0003-3832-6367
SPIN-code: 7156-6517

MD, PhD

Russian Federation, 27-10, Lomonosovsky av., 119991

Leila S. Sozaeva

Lomonosov Moscow State University; Enocrinology Research Centre

Email: Leila.sozaeva@gmail.com
ORCID iD: 0000-0002-5650-1440
SPIN-code: 9983-5662

MD, PhD

Russian Federation, 27-10, Lomonosovsky av., 119991, Moscow; Moscow

Pyotr A. Tyurin-Kuzmin

Lomonosov Moscow State University

Email: tyurinkuzmin.p@gmail.com
ORCID iD: 0000-0002-1901-1637
SPIN-code: 2149-7839
Scopus Author ID: 36646806400
ResearcherId: A-8193-2014

PhD in Biology

Russian Federation, 27-10, Lomonosovsky av., 119991, Moscow

References

  1. Lupp A, Klenk C, Röcken C, et al. Immunohistochemical identification of the PTHR1 parathyroid hormone receptor in normal and neoplastic human tissues. Eur J Endocrinol. 2010;162(5):979–986. doi: https://doi.org/10.1530/eje-09-0821
  2. Brenza HL, Kimmel-Jehan C, Jehan F, et al. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1alpha-hydroxylase gene promoter. Proc Natl Acad Sci USA. 1998;95(4):1387–1391. doi: https://doi.org/10.1073/pnas.95.4.1387
  3. Potts JT. Parathyroid hormone: past and present. J Endocrinol. 2005;187(3):311–325. doi: https://doi.org/10.1677/joe.1.06057
  4. Abou-Samra AB, Jüppner H, Force T, et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: A single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci USA. 1992;89(7):2732–2736. doi: https://doi.org/10.1073/pnas.89.7.2732
  5. Usdin TB, Hoare SRJ, Wang T, et al. TIP39: a new neuropeptide and PTH2-receptor agonist from hypothalamus. Nat Neurosci. 1999;2(11):941–943. doi: https://doi.org/10.1038/14724
  6. Castro M, Nilolaev VO, Palm D, et al. Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism. Proc Natl Acad Sci USA. 2005;102(44):16084–16089. doi: https://doi.org/10.1073/pnas.0503942102
  7. Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68:821–861. doi: https://doi.org/10.1146/annurev.biochem.68.1.821
  8. Ferrandon S, Feinstein TN, Castro M, et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol. 2009;5(10):734–742. doi: https://doi.org/10.1038/nchembio.206
  9. Luttrell LM, Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci. 2002;115(Pt 3):455–465.
  10. Wehbi VL, Stevenson HP, Feinstein TN, et al. Noncanonical GPCR signaling arising from a PTH receptor-arrestin-Gβγ complex. Proc Natl Acad Sci USA. 2013;110(4)–1530-1535. doi: https://doi.org/10.1073/pnas.1205756110
  11. Mahon MJ, Donowitz M, Yun CC, Segre GV. Na(+)/H(+ ) exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Nature. 2002;417(6891):858–861. doi: https://doi.org/10.1038/nature00816
  12. Cheloha RW, Gellman SH, Vilardaga JP, Gardella TJ, et al. PTH receptor-1 signalling-mechanistic insights and therapeutic prospects. Nat Rev Endocrinol. 2015;11(12):712–724. doi: https://doi.org/10.1038/nrendo.2015.139
  13. White AD, Fang F, Jean-Alphonse FG, et al. Ca(2+) allostery in PTH-receptor signaling. Proc Natl Acad Sci USA. 2019;116(8):3294–3299. doi: https://doi.org/10.1073/pnas.1814670116
  14. Kalinina NI, Sysoeva VYu, Rubina KA, et al. Mesenchymal stem cells in tissue growth and repair. Acta Naturae. 2011;3(4):30–37. doi: https://doi.org/10.32607/20758251-2011-3-4-30-37
  15. Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–834. doi: https://doi.org/10.1038/nature09262
  16. Sinha P, Aarnisalo P, Chubb R, et al. Loss of Gsα in the Postnatal Skeleton Leads to Low Bone Mass and a Blunted Response to Anabolic Parathyroid Hormone Therapy. J Biol Chem. 2016;291(4):1631–1642. doi: https://doi.org/10.1074/jbc.M115.679753
  17. Петрова Т.В., Свинарева Д.А., Нифонтова И.Н., и др. Стромальная регуляция стволовых кроветворных клеток в длительных культурах костного мозга человека под действием паратиреоидного гормона // Клеточные технологии в биологии и медицине. — 2006. — № 4. — С. 218–222. [Petrova TV, Svinareva DA, Nifontova IN, et al. Stromal’naja reguljacija stvolovyh krovetvornyh kletok v dlitel’nyh kul’turah kostnogo mozga cheloveka pod dejstviem paratireoidnogo gormona // Kletochnye tehnologii v biologii i medicine. 2006(4):218–222. (In Russ.)]
  18. Terauchi M, Li JY, Bedi B, et al. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab. 2009;10(3):229–240. doi: https://doi.org/10.1016/j.cmet.2009.07.010
  19. Свинарева Д.А., Нифонтова И.Н., Дризе Н.И. Влияние паратиреоидного гормона ПТГ (1-34) на кроветворные и стромальные стволовые клетки // Бюллетень экспериментальной биологии и медицины. — 2004. — № 138. — С. 645–648. [Svinareva DA, Nifontova IN, Drize NI. Vlijanie paratireoidnogo gormona PTG (1-34) na krovetvornye i stromal’nye stvolovye kletki // Bjulleten’ jeksperimental’noj biologii i mediciny. 2004(138):645–648. (In Russ.)]
  20. Захаров Ю.М., Макарова Э.Б. Регуляция остеогенной дифференциации мезенхимальных стволовых клеток костного мозга // Российский физиологический журнал им. И.М. Сеченова. — 2013. – № 99. — С. 417–432. [Zaharov YM, Makarova EB. Reguljacija osteogennoj differenciacii mezenhimal’nyh stvolovyh kletok kostnogo mozga // Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova. 2013(99):417–432. (In Russ.)]
  21. Prisby R, Guignandon A, Vanden-Bossche A, et al. Intermittent PTH(1-84) is osteoanabolic but not osteoangiogenic and relocates bone marrow blood vessels closer to bone-forming sites. J Bone Miner Res. 2011;26(11):2583–2596. doi: https://doi.org/10.1002/jbmr.459
  22. Selvamurugan N, Chou WY, Pearman AT, et al. Parathyroid hormone regulates the rat collagenase-3 promoter in osteoblastic cells through the cooperative interaction of the activator protein-1 site and the runt domain binding sequence. J Biol Chem. 1998;273(17):10647–10657. doi: https://doi.org/10.1074/jbc.273.17.10647
  23. Pellicelli M, Miller JA, Arabian A, et al. The PTH-Galphas-protein kinase A cascade controls alphaNAC localization to regulate bone mass. Mol Cell Biol. 2014;34(9):1622–1633. doi: https://doi.org/10.1128/mcb.01434-13
  24. Thouverey C, Caverzasio J. Suppression of p38alpha MAPK Signaling in Osteoblast Lineage Cells Impairs Bone Anabolic Action of Parathyroid Hormone. J Bone Miner Res. 2016;31(5):985–993. doi: https://doi.org/10.1002/jbmr.2762
  25. Guo J, Liu M, Yang D, et al. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab. 2010;11(2):161–171. doi: https://doi.org/10.1016/j.cmet.2009.12.007
  26. Suzuki A, Ozono K, Kubota T, et al. PTH/cAMP/PKA signaling facilitates canonical Wnt signaling via inactivation of glycogen synthase kinase-3beta in osteoblastic Saos-2 cells. J Cell Biochem. 2008;104(1):304–317. doi: https://doi.org/10.1002/jcb.21626
  27. Klein-Nulend J, Nijweide PJ, Burger EH. Osteocyte and bone structure. Curr Osteoporos Rep. 2003;1(1):5–10. doi: https://doi.org/10.1007/s11914-003-0002-y
  28. Fermor B, Skerry TM. PTH/PTHrP receptor expression on osteoblasts and osteocytes but not resorbing bone surfaces in growing rats. J Bone Miner Res. 1995;10(12):1935–1943. doi: https://doi.org/10.1002/jbmr.5650101213
  29. Takeda N, Tsuboyama T, Kasai R, et al. Expression of the c-fos gene induced by parathyroid hormone in the bones of SAMP6 mice, a murine model for senile osteoporosis. Mech Ageing Dev. 1999;108(1):87–97. doi: https://doi.org/10.1016/s0047-6374(99)00002-0
  30. Chow JW, Fox S, Jagger CJ, Chambers TJ. Role for parathyroid hormone in mechanical responsiveness of rat bone. Am J Physiol. 1998;274(1):E146–E154. doi: https://doi.org/10.1152/ajpendo.1998.274.1.E146
  31. Fukumoto S. Physiological regulation and disorders of phosphate metabolism--pivotal role of fibroblast growth factor 23. Intern Med. 2008;47(5):337–343. doi: https://doi.org/10.2169/internalmedicine.47.0730
  32. Fukumoto S. The role of bone in phosphate metabolism. Mol Cell Endocrinol. 2009;310(1–2):63–70. doi: https://doi.org/10.1016/j.mce.2008.08.031
  33. Lavi-Moshayoff V, Wasserman G, Meir T, et al. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol. 2010;299(4):F882–E889. doi: https://doi.org/10.1152/ajprenal.00360.2010
  34. Nagy V, Penninger JM. The RANKL-RANK Story. Gerontology. 2015;61(6):534–542. doi: https://doi.org/10.1159/000371845
  35. Park JH, Lee NK, Lee SY. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Molecules and cells. 2017;40(10):706–713. doi: https://doi.org/10.14348/molcells.2017.0225
  36. Park-Min K-H. Mechanisms involved in normal and pathological osteoclastogenesis. Cellular and molecular life sciences : CMLS. 2018;75(14):2519–2528. doi: https://doi.org/10.1007/s00018-018-2817-9
  37. Ikebuchi Y, Aoki S, Honma M, et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018;561(7722):195–200. doi: https://doi.org/10.1038/s41586-018-0482-7
  38. Бруцкая-Стемпковская Е.В., Шепелькевич А.П., Васильева Н.А., и др. Костные проявления первичного гиперпаратиреоза у женщин в постменопаузальном периоде // Хирургия. Восточная Европа. — 2018. — Т. 7. — № 3. — С. 383–396. [Brutskaya-Stempkovskaya E.1, Shepelkevich A.1, Vasilieva N, et al. Bone disorders in postmenopausal women with primary hyperparathyroidism. Surgery. Eastern Europe. 2018;7(3):383-396. In Russ.)]
  39. Zanocco KA, Yeh MW. Primary Hyperparathyroidism: Effects on Bone Health. Endocrinol Metab Clin North Am. 2017;46(1):87–104. doi: https://doi.org/10.1016/j.ecl.2016.09.012
  40. Vu TD, et al. New insights into the effects of primary hyperparathyroidism on the cortical and trabecular compartments of bone. Bone. 2013;55(1):57–63. doi: https://doi.org/10.1016/j.bone.2013.03.009
  41. Cusano NE, Nishiyama KK, Zhang C, et al. Noninvasive Assessment of Skeletal Microstructure and Estimated Bone Strength in Hypoparathyroidism. J Bone Miner Res. 2016;31(2):308–316. doi: https://doi.org/10.1002/jbmr.2609
  42. Rubin MR, Dempster DW, Zhou H, et al. Dynamic and structural properties of the skeleton in hypoparathyroidism. J Bone Miner Res. 2008;23(12):2018–2024. doi: https://doi.org/10.1359/jbmr.080803
  43. Rubin MR, Dempster DW, Sliney Jr J, et al. PTH(1-84) administration reverses abnormal bone-remodeling dynamics and structure in hypoparathyroidism. J Bone Miner Res. 2011;26(11):2727–2736. doi: https://doi.org/10.1002/jbmr.452
  44. Blomstrand S, Claësson I, Säve-Söderbergh J. A case of lethal congenital dwarfism with accelerated skeletal maturation. Pediatr Radiol. 1985;15(2):141–143. doi: https://doi.org/10.1007/bf02388725
  45. Galera MF, de Silva Patrício FR, Lederman HM, et al. Blomstrand chondrodysplasia: a lethal sclerosing skeletal dysplasia. Case report and review. Pediatr Radiol. 1999;29(11):842–845. doi: https://doi.org/10.1007/s002470050709
  46. Duchatelet S, Ostergaard E, Cortes D, et al. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes. Hum Mol Genet. 2005;14(1):1–5. doi: https://doi.org/10.1093/hmg/ddi001
  47. Shapiro MS, Bernheim J, Gutman A, et al. Multiple abnormalities of anterior pituitary hormone secretion in association with pseudohypoparathyroidism. J Clin Endocrinol Metab. 1980;51(3):483–487. doi: https://doi.org/10.1210/jcem-51-3-483
  48. Дзеранова Л.К., Маказан Н.В., Пигарова Е.А., и др. Множественная гормональная резистентность и метаболические нарушения при псевдогипопаратиреозе // Ожирение и метаболизм. — 2018.— Т. 15. — № 2. — С. 51–56. [Dzeranova LK, Makazan NV, Pigarova EA, et al. Multiple hormonal resistance and metabolic disorders in pseudogypoparatiosis. Obesity and metabolism. 2018;15(2):51–55. (In Russ.)] doi: https://doi.org/10.14341/OMET20182
  49. Hanna P, Grybek V, Peres de Nanclares G, et al. Genetic and Epigenetic Defects at the GNAS Locus Lead to Distinct Patterns of Skeletal Growth but Similar Early-Onset Obesity. J Bone Miner Res. 2018;33(8):1480–1488. doi: https://doi.org/10.1002/jbmr.3450
  50. Kaplan FS, Craver R, MacEwen GD, et al. Progressive osseous heteroplasia: a distinct developmental disorder of heterotopic ossification. Two new case reports and follow-up of three previously reported cases. J Bone Joint Surg Am. 1994;76(3):425–436.
  51. Dumitrescu CE, Collins MT. McCune-Albright syndrome. Orphanet Journal of Rare Diseases. 2008;3(1):12. doi: https://doi.org/10.1186/1750-1172-3-12
  52. Майлян Э.А., Игнатенко Г.А., Резниченко Н.А. Уровни гормонов и маркеров костного обмена при постменопаузальном остеопорозе // Медико-социальные проблемы семьи. — 2018. — Т. 23. — № 1. — C. 41–48. [Maylyan EA, Ignatenko GA, Reznichenko NA. Hormone levels and markers of bone metabolismin postmenopausal osteoporosis. Medical and Social Problems Of Family. 2018;23(1):41–48. (In Russ.)]
  53. Jilka RL. Biology of the basic multicellular unit and the pathophysiology of osteoporosis. Med Pediatr Oncol. 2003;41(3):182–185. doi: https://doi.org/10.1002/mpo.10334
  54. Мамедова Е.О., Гребенникова Т.А., Белая Ж.Е., Рожинская Л.Я. Антитела к склеростину как новая анаболическая терапия остеопороза // Остеопороз и остеопатии. — 2019. — Т. 21. — № 3. — C. 21–29. [Mamedova EO, Grebennikova TA, Belaya ZhE, Rozhinskaya LYa. Sclerostin antibodies as novel anabolic therapy for osteoporosis. Osteoporosis and Bone Diseases. 2018;21(3):21-29. (In Russ.)] doi: https://doi.org/10.14341/osteo10127
  55. Ishtiaq S, Fogelman I, Hampson G. Treatment of post-menopausal osteoporosis: beyond bisphosphonates. J Endocrinol Invest. 2015;38(1):13–29. doi: https://doi.org/10.1007/s40618-014-0152-z
  56. Рожинская Л.Я., Гранская С.А., Мамедова Е.О., и др. Применение Деносумаба для лечения остеопороза различного генеза в реальной клинической практике // Остеопороз и остеопатии. — 2020. — Т. 23. — № 1. — C. 4–13. [Rozhinskaya LYa, Gronskaia SA, Mamedova EO, et al. The comparative efficiency of denosumab treatment in patients with postmenopausal osteoporosis, primary hyperparathyroidism and glucocorticoid-induced osteoporosis in real clinical practice. Osteoporosis and Bone Diseases. 2020;23(1):4–13. (In Russ.)] doi: https://doi.org/10.14341/osteo12415
  57. Anastasilakis AD, Polyzos SA, Makras P, et al. Clinical Features of 24 Patients With Rebound-Associated Vertebral Fractures After Denosumab Discontinuation: Systematic Review and Additional Cases. J Bone Miner Res. 2017;32(6):1291–1296. doi: https://doi.org/10.1002/jbmr.3110
  58. Kates SL, Ackert-Bicknell CL. How do bisphosphonates affect fracture healing? Injury. 2016;47(Suppl 1):S65–S68. doi: https://doi.org/10.1016/s0020-1383(16)30015-8
  59. Wojda SJ, Donahue SW. Parathyroid hormone for bone regeneration. J Orthop Res. 2018;36(10):2586–2594. doi: https://doi.org/10.1002/jor.24075
  60. Fu R, Selph S, McDonagh M, et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med. 2013;158(12):890–902. doi: https://doi.org/10.7326/0003-4819-158-12-201306180-00006
  61. Raggio BS, Winters R. Modern management of osteoradionecrosis. Curr Opin Otolaryngol Head Neck Surg. 2018;26(4):254–259. doi: https://doi.org/10.1097/moo.0000000000000459
  62. Mannstadt M, Clarke BL, Vokes T, et al. Efficacy and safety of recombinant human parathyroid hormone (1-84) in hypoparathyroidism (REPLACE): a double-blind, placebo-controlled, randomised, phase 3 study. Lancet Diabetes Endocrinol. 2013;1(4):275–283. doi: https://doi.org/10.1016/s2213-8587(13)70106-2
  63. Greenspan SL, Bone HG, Ettinger MP, et al. Effect of recombinant human parathyroid hormone (1-84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann Intern Med. 2007;146(5):326–339. doi: https://doi.org/10.7326/0003-4819-146-5-200703060-00005
  64. Piemonte S, Romagnoli E, Cipriani C, et al. The effect of recombinant PTH(1-34) and PTH(1-84) on serum ionized calcium, 1,25-dihydroxyvitamin D, and urinary calcium excretion: a pilot study. Calcif Tissue Int. 2009;85(4):287–292. doi: https://doi.org/10.1007/s00223-009-9280-4
  65. Cipriani C, Irani D, Bilezikian JP. Safety of osteoanabolic therapy: a decade of experience. J Bone Miner Res. 2012;27(12):2419–2428. doi: https://doi.org/10.1002/jbmr.1800

Supplementary files

Supplementary Files
Action
1. Fig 1. Key signaling cascades activated by PTHR1 upon stimulation of PTH and PGPP. Depending on which ligand acts on the receptor and which additional scaffold proteins are expressed to the cytoplasm, PTHR1 activates various signaling cascades. AC - adenylate cyclase; DAG - diacylglycerol; IF3 - inositol trisphosphate; PGPP - parathyroid hormone-like peptide; PKC - protein kinase C; PTH - parathyroid hormone; PTHR1 - type 1 parathyroid hormone receptor; FLS - phospholipase C; cAMP - cyclic adenosine monophosphate; NHERF is a framework protein (Na + / H + -exchange regulatory cofactor).

Download (239KB)
2. Fig 2. Effect of parathyroid hormone on various types of bone cells. PTH is a parathyroid hormone.

Download (393KB)

Copyright (c) 2021 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies