Outcome Analysis of the Flow Diversion with Pipeline Embolization Device for the Surgical Treatment of Unruptured Large and Giant Paraclinoid Carotid Aneurysms

Cover Page


Cite item

Full Text

Abstract

Background: Both the high frequency of recurrence of large or giant paraclinoid aneurysms (PA) of the internal carotid artery and the occurrence of intra- and postoperative complications, leading to unsatisfactory results of surgical treatment of this group of patients, make the stated problem urgent. Flow-diverter embolization devices are actively used in many large international neurosurgical centers for the treatment of cerebral aneurysms of different morphology, size, and localization. Currently, there are very few reports on the effectiveness of the use of flow diverting stents in the surgical treatment of large and giant PA of the internal carotid artery. The results of these studies are controversial and largely contradictory. 

Aim: Outcome analysis of the use of Pipeline embolization device (PED) for the surgical treatment of large and giant carotid PA. Methods: The study enrolled 37 patients (25 women, 12 men; mean age 51.7±10.7 years) who were divided into those treated with the PED alone versus those treated with the PED and concurrent coil embolization. The average follow-up period was 19.7±3.8 months. 

Results: In 56.7% of cases, PA caused the development of an insignificant neurological deficit (Modified Rankin Scale 1−2). In 18.9% of patients, PA provoked a gross neurologic deficit (MRS 3−5). 24.3% of patients with PA did not have any clinical-neurological manifestations. After the surgery, neurologic status improved in 32.4% of patients, remained the same — in 45.9% of cases, and the degree of neurologic deficit increased in 21.6%. PED procedure was performed in 70.2% of patients. In 29.7% of cases, the dislocation of large or giant PA of the internal carotid artery from the systemic blood stream was performed using PED and concurrent coil embolization. At the indicated period of patient observation, complete occlusion of large and giant carotid PA was achieved in 75.6% of cases, almost complete and partial occlusion — in 24.3%. The incidence of thromboembolic and hemorrhagic complications was 10.8% and 8.1%, respectively. Mortality rate among patients was 2.7%. 

Conclusions: The use of PED is an effective method for occluding large or giant PA of the internal carotid artery. Nevertheless, this method of endovascular treatment of PA is associated with a high complication incidence.

About the authors

V. A. Byvaltsev

Irkutsk State Medical University;
Railway Clinical Hospital on the Station Irkutsk-Passazhirskiy of Russian Railways Ltd.;
Irkutsk Scientific Center of Surgery and Traumatology;
Irkutsk State Academy of Postgraduate Education

Email: byval75vadim@yandex.ru
ORCID iD: 0000-0003-4349-7101
Irkutsk Russian Federation

Y. T. Makhambetov

National Center of Neurosurgery

Email: yermakh@gmail.com
ORCID iD: 0000-0002-7451-8756

Кандидат медицинских наук, заведующий отделением сосудистой и функциональной нейрохирургии Национального центра нейрохирургии г. Астанаы 

Адрес: 010000, Казахстан, Астана, проспект Туран, д. 34

Kazakhstan

I. A. Stepanov

Irkutsk State Medical University

Author for correspondence.
Email: edmoilers@mail.ru
ORCID iD: 0000-0001-9039-9147
Irkutsk Russian Federation

A. B. Kaliyev

National Center of Neurosurgery

Email: Asylbek.Kaliyev@nmh.kz
Astana Kazakhstan

A. K. Akshulakov

National Center of Neurosurgery

Email: neuroclinic@nmh.kz
Astana Kazakhstan

References

  1. Бывальцев В.А., Белых Е.Г., Степанов И.А. Выбор способа лечения церебральных аневризм различных локализаций в условиях развития современных эндоваскулярных технологий: метаанализ // Вестник Российской академии медицинских наук. ― 2016. ― Т.71. ― №1 ― С. 31–40. [Byval’tsev VA, Belykh EG, Stepanov IA. The choice of the treatment method for cerebral aneurysms of different locations in the era of advanced endovascular technologies: a meta-analysis. Annals of the Russian Academy of Medical Sciences. 2016;71(1):31–40. (In Russ).] doi: 10.15690/vramn615.
  2. Крылов В.В. Хирургия аневризм головного мозга. ― М.: Медицина; 2011. ― Т. I. ― 432 с. [Krylov VV. Khirurgiya anevrizm golovnogo mozga. Vol. I. Moscow: Meditsina; 2011. 432 p. (In Russ).]
  3. Wiebers DO, Whisnant JP, Huston J, 3rd, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362(9378):103–110. doi: 10.1016/s0140-6736(03)13860-3.
  4. Шехтман О.Д., Элиава Ш.Ш., Пилипенко Ю.В. Треппинг параклиноидных аневризм внутренней сонной артерии с интраоперационной ультразвуковой флоуметрией // Вопросы нейрохирургии имени Н.Н. Бурденко. ― 2014. ― Т.78. ― №5 ― С. 16–22. [Shekhtman OD, Eliava ShSh, Pilipenko YuV. Trapping of large and giant paraclinoid aneurysms based on intraoperative flowmetry test. Zh Vopr Neirokhir im N N Burdenko. 2014;78(5):16–22. (In Russ).]
  5. Barrow DL, Alleyne C. Natural history of giant intracranial aneurysms and indications for intervention. Clin Neurosurg. 1995;42:214–244.
  6. Adeeb N, Griessenauer CJ, Shallwani H, et al. Pipeline embolization device in treatment of 50 unruptured large and giant aneurysms. World Neurosurg. 2017;105:232–237. doi: 10.1016/j.wneu.2017.05.128.
  7. Jeon HJ, Kim DJ, Kim BM, Lee JW. Pipeline embolization device for giant internal carotid artery aneurysms: 9-month follow-up results of two cases. J Cerebrovasc Endovasc Neurosurg. 2014;16(2):112–118. doi: 10.7461/jcen.2014.16.2.112.
  8. Kim BM, Shin YS, Baik MW, et al. Pipeline embolization device for large/giant or fusiform aneurysms: an initial multi-center experience in Korea. Neurointervention. 2016;11(1):10–17. doi: 10.5469/neuroint.2016.11.1.10.
  9. Oh SY, Kim MJ, Kim BS, Shin YS. Treatment for giant fusiform aneurysm located in the cavernous segment of the internal carotid artery using the pipeline embolization device. J Korean Neurosurg Soc. 2014;55(1):32–35. doi: 10.3340/jkns.2014.55.1.32.
  10. Chaisinanunkul N, Adeoye O, Lewis RJ, et al. Adopting a patient-centered approach to primary outcome analysis of acute stroke trials using a utility-weighted modified Rankin Scale. Stroke. 2015;46(8):2238–2243. doi: 10.1161/STROKEAHA.114.008547.
  11. Williams JR. The Declaration of Helsinki and public health. Bull World Health Organ. 2008;86(8):650–652. doi: 10.2471/blt.08.050955.
  12. Etminan N, Beseoglu K, Barrow DL, et al. Multidisciplinary consensus on assessment of unruptured intracranial aneurysms: proposal of an international research group. Stroke. 2014;45(5):1523–1530. doi: 10.1161/STROKEAHA.114.004519.
  13. Griessenauer CJ, Adeeb N, Foreman PM, et al. Impact of coil packing density and coiling technique on occlusion rates for aneurysms treated with stent-assisted coil embolization. World Neurosurg. 2016;94:157–166. doi: 10.1016/j.wneu.2016.06.127.
  14. Калиев А.Б. Эндоваскулярная хирургия сложных аневризм внутренней сонной артерии // Нейрохирургия и неврология Казахстана. ― 2016. ― №1 ― С. 19–23. [Kaliyev AB. Endovascular treatment of complex aneurysms of the internal carotid artery. Neirokhirurgiya i nevrologiya Kazakhstana. 2016;(1):19–23. (In Russ).]
  15. Sluzewski M, Menovsky T, van Rooij WJ, Wijnalda D. Coiling of very large or giant cerebral aneurysms: Long-term clinical and serial angiographic results. AJNR Am J Neuroradiol. 2003;24(2):257–262.
  16. Gruber A, Killer M, Bavinzski G, Richling B. Clinical and angiographic results of endosaccular coiling treatment of giant and very large intracranial aneurysms: a 7-year, single-center experience. Neurosurgery. 1999;45(4):793–803. doi: 10.1097/00006123-199910000-00013.
  17. Molyneux AJ, Ellison DW, Morris J, Byrne JV. Histological findings in giant aneurysms treated with Guglielmi detachable coils. Report of two cases with autopsy correlation. J Neurosurg. 1995;83(1):129–132. doi: 10.3171/jns.1995.83.1.0129.
  18. Szikora I, Turanyi E, Marosfoi M. Evolution of flow-diverter endothelialization and thrombus organization in giant fusiform aneurysms after flow diversion: a histopathologic study. AJNR Am J Neuroradiol. 2015;36(9):1716–1720. doi: 10.3174/ajnr.A4336.
  19. Lv X, Ge H, He H, et al. A systematic review of pipeline embolization device for giant intracranial aneurysms. Neurol India. 2017;65(1):35–38. doi: 10.4103/0028-3886.198200.
  20. Nelson PK, Lylyk P, Szikora I, et al. The pipeline embolization device for the intracranial treatment of aneurysms trial. AJNR Am J Neuroradiol. 2011;32(1):34–40. doi: 10.3174/ajnr.A2421.
  21. Becske T, Kallmes DF, Saatci I, et al. Pipeline for uncoilable or failed aneurysms: results from a multicenter clinical trial. Radiology. 2013;267(3):858–868. doi: 10.1148/radiol.13120099.
  22. Brinjikji W, Murad MH, Lanzino G, et al. Endovascular treatment of intracranial aneurysms with flow diverters: a meta-analysis. Stroke. 2013;44(2):442–447. doi: 10.1161/Strokeaha.112.678151.
  23. Hoh BL, Hosaka K, Downes DP, et al. Stromal cell-derived factor-1 promoted angiogenesis and inflammatory cell infiltration in aneurysm walls. J Neurosurg. 2014;120(1):73–86. doi: 10.3171/2013.9.JNS122074.
  24. Chalouhi N, Ali MS, Jabbour PM, et al. Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab. 2012;32(9):1659–1676. doi: 10.1038/jcbfm.2012.84.
  25. Rouchaud A, Ramana C, Brinjikji W, et al. Wall apposition is a key factor for aneurysm occlusion after flow diversion: a histologic evaluation in 41 rabbits. AJNR Am J Neuroradiol. 2016;37(11):2087–2091. doi: 10.3174/ajnr.A4848.
  26. Kadirvel R, Ding YH, Dai DY, et al. Cellular mechanisms of aneurysm occlusion after treatment with a flow diverter. Radiology. 2014;270(2):394–399. doi: 10.1148/radiol.13130796.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies