GLUTATHIONE AND GLUTAREDOXIN IN ROSCOVITINE-MEDIATED INHIBITION OF BREAST CANCER CELL PROLIFERATION

Cover Page


Cite item

Full Text

Abstract

Background: Breast tumors are number one cause of cancer morbidity and mortality among women around the world, and Russia is not an exception. Many proteins that control proliferation of immortalized cells are redox-regulated, which is essential for modulating cellular proliferative activity, especially during tumor growth. Studying the role of glutaredoxin and glutathione in cell cycle phase distribution will allow not only to identify the molecular targets regulating cell proliferation, but also to develop methods of diagnosis and targeted therapy of socially sensitive diseases, including breast cancer, in the future.

Aims: To evaluate the role of glutathione and glutaredoxin in the molecular mechanisms regulating MCF-7 breast cancer cell proliferation under the effects of roscovitine, a cyclin-dependent protein kinase inhibitor.

Materials and methods: The MCF-7 cell line (human breast adenocarcinoma) was used in the study. The cell culture was incubated in the presence and absence of roscovitine in the final concentration of 20 µmol for 18 h. The production of reactive oxygen species, the distribution of cells between cell cycle phases and the amount of Annexin V positive cells were determined using flow cytometry. The concentrations of total, reduced and oxidized glutathione, protein SH groups and protein-bound glutathione were measured by spectrophotometry. The levels of glutaredoxin, cyclin E and cyclin-dependent protein kinases were estimated by Western blotting with monoclonal antibodies.

Results: The effects of roscovitine in the MCF-7 cells resulted in cell cycle arrest in G2/М phases with the decreased levels of cyclin E and cyclin-dependent protein kinase 2. It was accompanied by activation of programmed cell death. In tumor cells incubated in the presence of roscovitine, oxidative stress was triggered, which was accompanied by the elevated generation of reactive oxygen species, the decrease in the concentration of reduced glutathione, and the rise in the level of glutaredoxin. It contributed to the increase in protein glutathionylation against the backdrop of the decreased SH group concentration.

Conclusions: Breast cancer cell proliferation under the effects of roscovitine is reduced following not only the decrease in the cyclin level and cyclin-dependent protein kinase activity, but also the shift in the intracellular oxidant/antioxidant ratio. Roscovitine-induced oxidative stress in the MCF-7 cells contributed to protein glutathionylation with the changes in the protein structure and functions. It results in impaired cell cycle progression, indicating a possibility to regulate cellular proliferation through modulating functional properties of redox-dependent proteins using the glutathione/glutaredoxin system.

About the authors

E. V. Shakhristova

Siberian state medical university

Email: shaxristova@yandex.ru
ORCID iD: 0000-0003-2938-1137

Кандидат медицинских наук, доцент кафедры биохимии и молекулярной биологии с курсом клинической лабораторной диагностики.

634050, Томск, Московский тракт, д. 2, тел.: +7 (3822) 90-11-01 доб. 1853.

SPIN-код: 8125-6414

Russian Federation

E. A. Stepovaya

Siberian state medical university

Author for correspondence.
Email: muir@mail.ru
ORCID iD: 0000-0001-9339-6304

Доктор медицинских наук, профессор, профессор кафедры биохимии и молекулярной биологии с курсом клинической лабораторной диагностики.

634050, Томск, Московский тракт, д. 2, тел.: +7 (3822) 90-11-01 доб. 1853.

SPIN-код: 5562-4522

Russian Federation

O. L. Nosareva

Siberian state medical university

Email: olnosareva@yandex.ru
ORCID iD: 0000-0002-7441-5554

Кандидат медицинских наук, доцент кафедры биохимии и молекулярной биологии с курсом клинической лабораторной диагностики.

634050, Томск, Московский тракт, д. 2, тел.: +7 (3822) 90-11-01 доб. 1853.

SPIN-код: 5688-7566

Russian Federation

E. V. Rudikov

Siberian state medical university

Email: korvin_w@mail.ru
ORCID iD: 0000-0003-3283-3616

Интерн кафедры биохимии и молекулярной биологии с курсом клинической лабораторной диагностики.

634050, Томск, Московский тракт, д. 2, тел.: +7 (3822) 90-11-01 доб. 1853.

SPIN-код: 5559-4313

Russian Federation

V. V. Novitsky

Siberian state medical university

Email: patfizssmu@yandex.ru
ORCID iD: 0000-0002-9577-8370

Доктор медицинских наук, профессор, академик РАН, заведующий кафедрой патофизиологии.

634050, Томск, Московский тракт, д. 2, тел.: +7 (3822) 90-11-01 доб. 1740.

SPIN-код: 7160-6881

Russian Federation

References

  1. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi: 10.3322/caac.21262.
  2. Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2015 году (заболеваемость и смертность). ― М.: МНИОИ им. П.А. Герцена; 2017. ― 250 с. [Kaprin AD, Starinskii VV, Petrova GV. Zlokachestvennye novoobrazovaniya v Rossii v 2015 godu (zabolevaemost’ i smertnost’). Moscow: MNIOI im. P.A. Gertsena; 2017. 250 p. (In Russ).]
  3. Дубинина Е.Е., Пустыгина А.В. Окислительная модификация протеинов, ее роль при патологических состояниях // Украинский биохимический журнал. — 2008. — Т.80. — №6 — С. 5–18. [Dubinina EE, Pustygina AV. Okislitel’naya modifikatsiya proteinov, ee rol’ pri patologicheskikh sostoyaniyakh. The Ukrainian Biochemical Journal. 2008;80(6):5–18. (In Russ).]
  4. Калинина Е.В., Чернов Н.Н., Алеид Р., и др. Современные представления об антиоксидантной роли глутатиона и глутатионзависимых ферментов // Вестник Российской академии медицинских наук. — 2010. — №3 — С. 46–54. [Kalinina EV, Chernov NN, Aleid R, Novichkova MD, Saprin AN, Berezov TT. Current views of antioxidative activity of glutathione and glutathione-depending enzymes. Vestn Ross Akad Med Nauk. 2010;(3):46–54. (In Russ).]
  5. Степовая Е.А., Шахристова Е.В., Рязанцева Н.В., и др. Окислительная модификация белков и система глутатиона при модуляции редокс-статуса клеток эпителия молочной железы // Биомедицинская химия. — 2016. — Т.62. — №1 — С. 64–68. [Stepovaya EA, Shakhristova EV, Ryazantseva NV, et al. The role of oxidative protein modification and the glutathione system in modulation of the redox status of breast epithelial cells. Biomed Khim. 2016;62(1):64–68. (In Russ).] doi: 10.18097/PBMC20166201064.
  6. Murphy MP, Holmgren A, Larsson NG, et al. Unraveling the biological roles of reactive oxygen species. Cell Metab. 2011;13(4):361–366. doi: 10.1016/j.cmet.2011.03.010.
  7. Halliwell B. Free radicals and antioxidants: updating a personal view. Nutr Rev. 2012;70(5):257–265. doi: 10.1111/j.1753-4887.2012.00476.x.
  8. Октябрьский О.Н., Смирнова Г.В. Редокс-регуляция клеточных функций // Биохимия. — 2007. — Т.72. — №2 — С. 158–175. [Oktyabrsky ON, Smirnova GV. Redox regulation of cellular functions. Biochemistry. 2007;72(2):158–175. (In Russ).]
  9. Зенков Н.К., Меньщикова Е.Б., Ткачёв В.О. Некоторые принципы и механизмы редокс-регуляции // Кислород и антиоксиданты. — 2009. — №1 — С. 3–64. [Zenkov NK, Men’shchikova EB, Tkachev VO. Nekotorye printsipy i mekhanizmy redoks-regulyatsii. Kislorod i antioksidanty. 2009;(1):3–64. (In Russ).]
  10. Rajnai Z, Mehn D, Beery E, et al. ATP-binding cassette B1 transports seliciclib (R-roscovitine), a cyclin-dependent kinase inhibitor. Drug Metab Dispos. 2010;38(11):2000–2006. doi: 10.1124/dmd.110.032805.
  11. Cappellini A, Chiarini F, Ognibene A, et al. The cyclin-dependent kinase inhibitor roscovitine and the nucleoside analog sangivamycin induce apoptosis in caspase-3 deficient breast cancer cells independent of caspase mediated P-glycoprotein cleavage. Cell Cycle. 2009;8(9):1421–1425. doi: 10.4161/cc.8.9.8323.
  12. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. 2004;142(2):231–255. doi: 10.1038/sj.bjp.0705776.
  13. Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2006;1(6):3159–3165. doi: 10.1038/nprot.2006.378.
  14. Burchill BR, Oliver JM, Pearson CB, et al. Microtubule dynamics and glutathione metabolism in phagocytizing human polymorphonuclear leukocytes. J Cell Biol. 1978;76(2):439–447. doi: 10.1083/jcb.76.2.439.
  15. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1006/abio.1976.9999.
  16. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–990. doi: 10.1016/j.cellsig.2012.01.008.
  17. Sengupta R, Holmgren A. Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase. World J Biol Chem. 2014;5(1):68–74. doi: 10.4331/wjbc.v5.i1.68.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies