Tissue-Engineered Constructions for the Needs of Cardiovascular Surgery: Possibilities of Personalization and Prospects for Use (Problem Article)

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In the market for products for the needs of cardiovascular surgery, there is still no effective vascular prosthesis with a diameter of less than 4 mm, despite the continuous increase in the incidence of atherosclerosis and the increase in the number of surgical operations to restore blood flow in the affected arteries. At the same time, vascular tissue engineering has diverse methodological approaches for the development of effective functionally active small-diameter vascular prostheses suitable for adaptive growth and regeneration in situ. An important aspect is the possibility of personalizing the created prostheses not only by taking into account the individual anatomy of the patient’s vascular bed, but also by using autologous components to create such a prosthesis, which can be obtained directly from the recipient. The presented problematic article reflects the main results on the creation of biodegradable vascular prostheses of small diameter, obtained at the Research Institute of the Research institute for complex issues of cardiovascular diseases (Kemerovo). The functionality of the prostheses was provided both through the incorporation of biologically active components with proangiogenic potential for the purpose of complete remodeling in situ, and the formation of cell-populated vascular prostheses using autologous cells and proteins from patients with coronary heart disease. In the future, these vascular prostheses can cover the clinical need for elective and emergency cardiovascular surgery, neuro- and microsurgery, and military field vascular surgery.

Full Text

Restricted Access

About the authors

Larisa V. Antonova

Research Institute for Complex Issues of Cardiovascular Diseases

Author for correspondence.
Email: antonova.la@mail.ru
ORCID iD: 0000-0002-8874-0788
SPIN-code: 8634-3286

MD, PhD
Russian Federation, Kemerovo

Olga L. Barbarash

Research Institute for Complex Issues of Cardiovascular Diseases

Email: barbol@kemcardio.ru
ORCID iD: 0000-0002-4642-3610
SPIN-code: 5373-7620

MD, PhD, Professor, Academician of the RAS

Russian Federation, Kemerovo

Leonid S. Barbarash

Research Institute for Complex Issues of Cardiovascular Diseases

Email: reception@kemcardio.ru
ORCID iD: 0000-0001-6981-9661

MD, PhD, Professor, Academican of the RAS

Russian Federation, Kemerovo

References

  1. Benjamin EJ, Muntner P, Alonso A, et al. Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56–e528. doi: https://doi.org/10.1161/CIR.0000000000000659
  2. Taggart DP. Current status of arterial grafts for coronary artery bypass grafting. Ann Cardiothorac Surg. 2013;2(4):427–430. doi: https://doi.org/10.3978/j.issn.2225-319X.2013.07.21
  3. Kitsuka T, Hama R, Ulziibayar A, et al. Clinical Application for Tissue Engineering Focused on Materials. Biomedicines. 2022;10(6):1439. doi: https://doi.org/10.3390/biomedicines10061439
  4. Moore MJ, Tan RP, Yang N, et al. Bioengineering artificial blood vessels from natural materials. Trends Biotechnol. 2022;40(6):693–707. doi: https://doi.org/10.1016/j.tibtech.2021.11.003
  5. Fang S, Ellman DG, Andersen DC. Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their in vivo Evaluation in Large Animals and Humans. Cells. 2021;10(3):713. doi: https://doi.org/10.3390/cells10030713
  6. Naegeli KM, Kural MH, Li Y, et al. Bioengineering Human Tissues and the Future of Vascular Replacement. Circ Res. 2022:131(1):109–126. doi: https://doi.org/10.1161/CIRCRESAHA.121.319984
  7. Stowell CET, Wang Y. Quickening: Translational design of resorbable synthetic vascular grafts. Biomaterials. 2018;173:71–86. doi: https://doi.org/10.1016/j.biomaterials.2018.05.006
  8. Zhu M, Wu Yi, Li W, et al. Biodegradable and elastomeric vascular grafts enable vascular remodeling. Biomaterials. 2018;183:306–318. doi: https://doi.org/10.1016/j.biomaterials.2018.08.063
  9. Durán-Rey D, Crisóstomo V, Sánchez-Margallo JA, et al. Systematic Review of Tissue-Engineered Vascular Grafts. Front Bioeng Biotechnol. 2021;9:771400. doi: https://doi.org/10.3389/fbioe.2021.771400
  10. Matsuzaki Yu, Iwaki R, Reinhardt JW, et al. The effect of pore diameter on neo-tissue formation in electrospun biodegradable tissue-engineered arterial grafts in a large animal model. Acta Biomate. 2020;115:176–184. doi: https://doi.org/10.1016/j.actbio.2020.08.011
  11. Zhao L, Lic X, Yang L, et al. Evaluation of remodeling and regeneration of electrospun PCL/fibrin vascular grafts in vivo. Mater Sci Eng C Mater Biol Appl. 2021;118:111441. doi: https://doi.org/10.1016/j.msec.2020.111441
  12. Antonova LV, Sevostyanova VV, Mironov AV, et al. In situ vascular tissue remodeling using biodegradable tubular scaffolds with incorporated growth factors and chemoattractant molecules. Complex Issues of Cardiovascular Diseases. 2018;7(2):25–36. doi: https://doi.org/10.17802/2306-1278-2018-7-2-25-36
  13. Hao D, Fan Y, Xiao W, et al. Rapid endothelialization of small diameter vascular grafts by a bioactive integrin-binding ligand specifically targeting endothelial progenitor cells and endothelial cells. Acta Biomater. 2020;108:178–193. doi: https://doi.org/10.1016/j.actbio.2020.03.005
  14. Maitz MF, Martins MCL, Grabow N, et al. The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: Passive and active approaches to guide blood-material interactions. Acta Biomater. 2019;94:33–33. doi: https://doi.org/10.1016/j.actbio.2019.06.019
  15. Matsuzaki Yu, Miyamoto S, Miyachi H, et al. Improvement of a Novel Small-diameter Tissue-engineered Arterial Graft with Heparin Conjugation. Ann Thorac Surg. 2021;111(4):1234–1241. doi: https://doi.org/10.1016/j.athoracsur.2020.06.112
  16. Wang C, Li Z, Zhang L, et al. Long-term results of triple-layered small diameter vascular grafts in sheep carotid arteries. Med Eng Phys. 2020;85:1–6. doi: https://doi.org/10.1016/j.medengphy.2020.09.007
  17. Matsuzaki Y, Ulziibayar A, Shoji T, et al. Heparin-Eluting Tissue-Engineered Bioabsorbable Vascular Grafts. Applied Sciences. 2021;11(10):4563. doi: https://doi.org/10.3390/app11104563
  18. Maes C, Carmeliet P, Moermans K, et al. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev. 2002;111(1–2):61–73. doi: https://doi.org/10.1016/s0925-4773(01)00601-3
  19. Takahashi H, Hattori S, Iwamatsu A, et al. A novel snake venom vascular endothelial growth factor (VEGF) predominantly induces vascular permeability through preferential signaling via VEGF receptor-1. J Biol Chem. 2004;279(44):46304–46314. doi: https://doi.org/10.1074/jbc.M403687200
  20. Kano MR, Morishita Y, Iwata C, et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. J Cell Sci. 2005;118(Pt16):3759–3768. doi: https://doi.org/10.1242/jcs.02483
  21. Ho TK, Shiwen X, Abraham D, et al. Stromal-Cell-Derived Factor-1 (SDF-1)/CXCL12 as Potential Target of Therapeutic Angiogenesis in Critical Leg Ischaemia. Cardiol Res Pract. 2012;2012:143209. doi: https://doi.org/10.1155/2012/143209
  22. Thomas LV, Lekshmi V, Nair PD. Tissue engineered vascular grafts-preclinical aspects. Int J Cardiol. 2013;167(4):1091–1100. doi: https://doi.org/10.1016/j.ijcard.2012.09.069
  23. Swartz DD, Andreadis ST. Animal models for vascular tissue-engineering. Curr Opin Biotechnol. 2013;24(5):916–925. doi: https://doi.org/10.1016/j.copbio.2013.05.005
  24. Ahmed M, Hamilton G, Seifalian AM. The performance of a small-calibre graft for vascular reconstructions in a senescent sheep model. Biomaterials. 2014;35(33):9033–9040. doi: https://doi.org/10.1016/j.biomaterials.2014.07.008
  25. Antonova LV, Mironov AV, Yuzhalin AE, et al. A Brief Report on an Implantation of Small-Caliber Biodegradable Vascular Grafts in a Carotid Artery of the Sheep. Pharmaceuticals (Basel). 2020;13(5):101. doi: https://doi.org/10.3390/ph13050101
  26. Fukunishi T, Ong CS, Yesantharao P, et al. Different degradation rates of nanofiber vascular grafts in small and large animal models. J Tissue Eng Regen Med. 2020;14(2):203–214. doi: https://doi.org/10.1002/term.2977
  27. Антонова Л.В., Кривкина Е.О., Резвова М.А., и др. Биодеградируемый сосудистый протез с армирующим внешним каркасом // Комплексные проблемы сердечно-сосудистых заболеваний. — 2019. — Т. 8. — № 2. — С. 87–97. [Antonova LV, Krivkina EO, Rezvova MA, et al. Biodegradable vascular graft reinforced with a biodegradable sheath. Complex Issues of Cardiovascular Diseases. 2019;8(2):87–97. (In Russ.)] doi: https://doi.org/10.17802/2306-1278-2019-8-2-87-97
  28. Патент РФ на изобретение № 2702239/07.10.2019, Бюл. № 28. Антонова Л.В., Севостьянова В.В., Резвова М.А., Кривкина Е.О., Кудрявцева Ю.А., Барбараш О.Л., Барбараш Л.С. Технология изготовления функционально активных биодеградируемых сосудистых протезов малого диаметра с лекарственным покрытием. [Patent RUS №2702239/ 07.10.2019. Byul. №28. Antonova LV, Sevostianova VV, Rezvova MA, Krivkina EO, Kudryavtseva YuA, Barbarash OL, Barbarash LS. Technology of producing functionally active biodegradable small-diameter vascular prostheses with drug coating. (In Russ).] Available from: https://patents.google.com/patent/RU2702239C1/ru (accessed: 22.02.2023).
  29. Груздева О.В., Бычкова Е.Е., Пенская Т.Ю., и др. Сравнительная характеристика гемостазиологического профиля овец и пациентов с сердечно-сосудистой патологией — основа для прогнозирования тромботических рисков в ходе преклинических испытаний сосудистых протезов // Современные технологии в медицине. — 2021. — Т. 13. — № 1. — С. 52–58. [Gruzdeva OV, Bychkova EE, Penskaya TY, et al. Comparative Analysis of the Hemostasiological Profile in Sheep and Patients with Cardiovascular Pathology as the Basis for Predicting Thrombotic Risks During Preclinical Tests of Vascular Prostheses. Sovrem Tekhnologii Med. 2021;13(1):52–56. (In Russ.)] doi: https://doi.org/10.17691/stm2021.13.1.06
  30. Antonova LV, Krivkina EO, Sevostianova VV, et al. Tissue-engineered carotid artery interposition grafts demonstrate high primary patency and promote vascular tissue regeneration in the ovine model. Polymers. 2021;13(16):2637. doi: https://doi.org/10.3390/ polym13162637
  31. Matveeva V, Khanova M, Sardin E, et al. Endovascular interventions permit isolation of endothelial colony-forming cells from peripheral blood. Int J Mol Sci. 2018;19(11):3453. doi: https://doi.org/10.3390/ijms19113453
  32. Матвеева В.Г., Ханова М.Ю., Антонова Л.В., и др. Фибрин — перспективный материал для тканевой сосудистой инженерии // Вестник трансплантологии и искусственных органов. — 2020. — Т. 22. — № 1. — С. 196–208. [Matveeva VG, Khanova MU, Antonova LV, et al. Fibrin — a promising material for vascular tissue engineering. Russian Journal of Transplantology and Artificial Organs. 2020;22(1):196–208. (In Russ.)] doi: https://doi.org/10.15825/1995-1191-2020-1-196-208
  33. Матвеева В.Г., Сенокосова Е.А., Ханова М.Ю., и др. Влияние способа полимеризации на свойства фибриновых матриц (пилотное исследование in vitro) // Комплексные проблемы сердечно-сосудистых заболеваний. — 2022. — Т. 11. — № 4S. — С. 134–145. [Matveeva VG, Senokosova EA, Khanova MYu, et al. Influence of the polymerization method on the properties of fibrin matrices. Complex Issues of Cardiovascular Diseases. 2022;11(4S):134-145. (In Russ.)] doi: https://doi.org/10.17802/2306-1278-2022-11-4S-134-145
  34. Matveeva VG, Senokosova EA, Sevostianova VV, et al. Advantages of Fibrin Polymerization Method without the Use of Exogenous Thrombin for Vascular Tissue Engineering Applications. Biomedicines. 2022;10(4):789. doi: https://doi.org/10.3390/biomedicines10040789
  35. Ханова М.Ю., Великанова Е.А., Матвеева В.Г., и др. Формирование монослоя эндотелиальных клеток на поверхности сосудистого протеза малого диаметра в условиях потока // Вестник трансплантологии и искусственных органов. — 2021. — Т. 23. — № 3. — С. 101–114. [Khanova MYu, Velikanova EA, Matveeva VG, et al. Endothelial cell monolayer formation on a small-diameter vascular graft surface under pulsatile flow conditions. Russian Journal of Transplantology and Artificial Organs. 2021;23(3):101–114. (In Russ.)] doi: https://doi.org/10.15825/1995-1191-2021-3-101-114

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Proposed scheme of the mechanisms that determine the cellular response and recruitment of cells into the wall of a biodegradable vascular prosthesis PHBV/PCL/GF mix

Download (512KB)
3. Figure 2. Comparative evaluation of patency and remodeling of vascular prostheses PHBV/PCL/GF mix with a diameter of 1.5 mm after 12 months of implantation in the abdominal part of the rat aorta (in comparison with unmodified analogues) [12]

Download (392KB)
4. Figure 3. Biodegradable vascular prosthesis PHBV/PCL/GF mixHep/Ilo with anti-aneurysmal scaffold

Download (385KB)
5. Figure 4. Comparative histological picture of the wall of the remodeled vascular prosthesis PHBV/PCL/GF mixHep/Ilo with a diameter of 4 mm 12 months after implantation and the intact sheep carotid artery [30]

Download (441KB)
6. Figure 5. Relative number of positive culture results at blood sampling points in patients undergoing coronary bypass surgery (CABG) and percutaneous coronary intervention (PCI), %

Download (120KB)
7. Figure 6. Examples of histograms of various antigens on CD45– and HUVEC (flow cytometry) populations [31]

Download (309KB)
8. Figure 7. Photographs of CD45– and HUVEC colonies taken with a confocal microscope [31]

Download (467KB)
9. Figure 8. Biological properties of PHBV/PCL matrices coated with various extracellular matrix proteins

Download (445KB)
10. Figure 9. Retention of cells on the surface of biodegradable vascular prostheses PHBV/PCL coated with various extracellular matrix proteins under static and pulsating flow conditions

Download (125KB)

Copyright (c) 2023 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies