Degradome Components in Progression of Squamous Cell Carcinoma of the Head and Neck

Cover Page


Cite item

Full Text

Abstract

The process of tumor progression is closely related to the intracellular, extracellular and intramembranous proteolysis. Many studies indicate that the proteases function as part of an extensive multidirectional network of proteolytic interactions. Disturbance of strictly controlled equilibrium of the proteolytic system is described in a number of diseases, including cancer. The paper presents a review of the available data concerning the contribution of intracellular, extracellular and intramembrane proteolysis to the process of squamous cell head and neck carcinoma. Specific mechanisms of interaction of different proteolytic systems in cancer progression both in general and in squamous cell head and neck carcinoma remain underinvestigated. The versatility of functions and complexity of the relationships between proteolytic systems highlights the importance of studying the participation of all degradome components in tumor progression that may clarify the multi-link complex mechanisms of carcinogenesis of squamous cell head and neck carcinoma and to identify markers of progression and/or a targets for therapeutic intervention.

About the authors

Gelena Valer'evna Kakurina

Tomsk Cancer Research Institute

Author for correspondence.
Email: kakurinagv@oncology.tomsk.ru
MD, PhD, Cheif researcher Russian Federation

Irina Viktorovna Kondakova

Tomsk Cancer Research Institute

Email: kondakova@oncology.tomsk.ru
MD, PhD, Head of the tumor biochemistry laboratory Russian Federation

Evgeniy Lkhamatsyrenovich Choynzonov

Tomsk Cancer Research Institute

Email: info@oncology.tomsk.ru
MD, PhD, Professor, Academician of the Russian Academy of Sciences, Director of the Tomsk Cancer Research Institute Russian Federation

References

  1. Чойнзонов ЕЛ, Балацкая ЛН, Кицманюк ЗД, Мухамедов МР, Дубский СВ. Реабилитация больных опухолями головы и шеи. Томск: Изд-во НТЛ. 2003. 296 c.
  2. Какурина ГВ, Кондакова ИВ, Чойнзонов ЕЛ. Постгеномные технологии в прогнозе метастазирования плоскоклеточных карцином головы и шеи. Российский биотерапевтический журнал. 2011;10(3):31–36.
  3. Какурина ГВ, Кондакова ИВ, Чойнзонов ЕЛ. Прогнозирование метастазирования плоскоклеточных карцином головы и шеи. Вопросы онкологии. 2012;58(1):26–32.
  4. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–252. doi: 10.1038/nrc2618
  5. Mason SD, Joyce JA. Proteolytic networks in cancer. Trends Cell Biol. 2011;21(4):228–237.
  6. Edwards D. The Cancer Degradome: Proteases and Cancer Biology. New York, London: Springer. 2008. 926 p. doi: 10.1007/978-0-387-69057-5
  7. Ugalde AP, Ordóez GR, Quirós PM. Puente XS, López-Otín C. Metalloproteases and the degradome. Methods Mol Biol. 2010;622:3–29. doi: 10.1007/978-1-60327-299-5_1
  8. Клишо ЕВ, Кондакова ИВ, Чойнзонов ЕЛ, Черемисина ОВ, Чижевская СЮ, Шишкин ДА. Прогностическая значимость определения металлопротеиназ и их тканевых ингибиторов у больных плоскоклеточным раком органов головы и шеи. Онкохирургия. 2011;3(1):17–22.
  9. Спирина ЛВ, Кондакова ИВ, Клишо ЕВ, Какурина ГВ, Шишкин ДА. Металлопротеиназы как регуляторы неоангиогенеза в злокачественных новообразованиях. Сибирский онкологический журнал. 2007;1:67–71.
  10. Lemberg MK, Freeman M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 2007;17(11):1634–1646. doi: 10.1101/gr.6425307
  11. Brown MS, Ye J, Rawson RB, Goldstein JL. Regulated Intramembrane Proteolysis: A Control Mechanism Conserved from Bacteria to Humans. Cell. 2000;100(4):391–398.
  12. Lemberg MK. Intramembrane Proteolysis in Regulated Protein Trafficking. Traffic. 2011;12(9):1109–1118. doi: 10.1111/j.1600-0854.2011.01219.x
  13. Magdolen V. Novel cancer related biomarkers. In: Kallikrein related peptidases. Ed. V Magdolen, CP. Sommerhoff, F Hans, S Manfred. Berlin: Walter de Gruyter. 2012. Р. 226.
  14. Welman A, Sproul D, Mullen P, Muir M, Kinnaird AR, Harrison DJ, Faratian D, Brunton VG, Frame MC. Diversity of Matriptase Expression Level and Function in Breast Cancer. PLoS ONE. 2012;7(4):e34182. doi: 10.1371/journal.pone.0034182
  15. Kawaguchi M, Kataoka H. Mechanisms of Hepatocyte Growth Factor Activation in Cancer Tissues. Cancers. 2014;6(4):1890–1904. doi: 10.3390/cancers6041890
  16. Cheng MF, Huang MS, Lin CS, Lin LH, Lee HS, Jiang JC, Hsia KT. Expression of matriptase correlates with tumour progression and clinical prognosis in oral squamous cell carcinoma. Histopathology. 2014;65(1):24–34.
  17. Szabo R, Rasmussen AL, Moyer AB, Kosa P, Schafer JM, Molinolo AA, Gutkind JS, Bugge TH. c-Met-induced epithelial carcinogenesis is initiated by the serine protease matriptase. Oncogene. 2011;30(17):2003–2016. doi: 10.1038/onc.2010.586
  18. Lyons JG, Patel V, Roue NC, Fok SY, Soon LL, Halliday GM, Gutkind JS. Snail up-regulates proinflammatory mediators and inhibits differentiation in oral keratinocytes. Cancer Res. 2008;68(12):4525–4530. doi: 10.1158/1078-0432.CCR-07-6735
  19. Sales KU, Friis S, Konkel JE, Godiksen S, Hatakeyama M, Hansen KK, Rogatto SR, Szabo R, Vogel LK, Chen W, Gutkind JS, Bugge TH. Non-hematopoietic PAR-2 is essential for matriptase driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis. Oncogene. 2015;34(3):346–356. doi: 10.1038/onc.2013.563
  20. Алейник АН, Кондакова ИВ. Сигнальная система notch и онкогенез. Вопросы онкологии. 2012;58(5):593–596.
  21. Gridley T. Notch signaling in vascular development and physiology. Development. 2007;134(15):2709–2718 doi: 10.1242/dev.004184
  22. Maretzky T, Reiss K, Ludwig A, Buchholz J, Scholz F, Proksch E, de Strooper B, Hartmann D, Saftig P. ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and β-catenin translocation. Proc Natl Acad Sci USA. 2005;102(26):9182–9187 doi: 10.1073/pnas.0500918102
  23. Zielinski V, Brunner M, Heiduschka G, Schneider S, Seemann R, Erovic B, Thurnher D. ADAM8 in squamous cell carcinoma of the head and neck: a retrospective study. BMC Cancer. 2012;12:76. doi: 10.1186/1471-2407-12-76
  24. Rao VH, Kandel A, Lynch D, Pena Z, Marwaha N, Deng C, Watson P, Hansen LA. A positive feedback loop between HER2 and ADAM12 in human head and neck cancer cells increases migration and invasion. Oncogene. 2012;31(23):2888–28898 doi: 10.1038/onc.2011.460
  25. Boulton ME, Cai J, Grant MB. Gamma-Secretase: a multifaceted regulator of angiogenesis. J Cell Mol Med. 2008;12(3):781–795. doi: 10.1111/j.1582-4934.2008.00274.x
  26. Egloff AM, Grandis JR. Molecular Pathways: Context dependent approaches to Notch targeting as cancer therapy. Clin Cancer Res. 2012;18(19):5188–5195. doi: 10.1158/1078-0432.CCR-11-2258
  27. Romanic AM, Burns-Kurtis CL, Ao Z, Arleth AJ, Ohlstein EH. Upregulated expression of human membrane type-5 matrix metalloproteinase in kidneys from diabetic patients. Am J Physiol Renal Physiol. 2001;281(2):F309–317.
  28. Рогова ЛН, Шестернина НВ, Замечник ТВ, Фастова ИА. Матриксные металлопротеиназы, их роль в физиологических и патологических процессах. Вестник новых медицинских технологий. 2011;ХVIII(2):86.
  29. Murphy DA and Courtneidge SA. The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol. 2011;12(7):413–426. doi: 10.1038/nrm3141
  30. Ratnikov BI, Rozanov DV, Postnova TI, Baciu PG, Zhang H, DiScipio RG, Chestukhina GG, Smith JW, Deryugina EI, Strongin AY. An Alternative Processing of Integrin αv subunit in tumor cells by membrane type-1 matrix metalloproteinase. Journal of Biological Chemistry. 2002;277:7377–7385. doi: 10.1074/jbc.M109580200
  31. Albrechtsen R, Kveiborg M. ADAM12 redistributes and activates MMP-14, resulting in gelatin degradation, reduced apoptosis and increased tumor growth. J Cell Sci. 2013;126(P20):4707–4720. doi: 10.1242/jcs.129510
  32. Берман АЕ, Козлова НИ, Морозевич ГЕ. Интегрины как потенциальная мишень для целевой терапии рака. Биомедицинская химия. 2013;59(3):239–248.
  33. Спирина ЛВ, Кондакова ИВ. Миграция клеток и онкогенез. Российский онкологический журнал. 2010;3:49–53.
  34. Machesky LM. Lamellipodia and filopodia in metastasis and invasion. FEBS. 2008;582(14):2102–2111. doi: 10.1016/j.febslet.2008.03.039
  35. Yu X, Zech T, McDonald L, Gonzalez EG, Li A, Macpherson I, Schwarz JP, Spence H, Futó K, Timpson P, Nixon C, Ma Y, Anton IM, Visegrády B, Insall RH, Oien K, Blyth K, Norman JC, Machesky LM. N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods. JCB. 2012;199(3):527–544. doi: 10.1083/jcb.201203025
  36. Miyazawa Y, Uekita T, Ito Y, Seiki M, Yamaguchi H, Sakai R. CDCP1 regulates the function of MT1-MMP and invadopodia mediated invasion of cancer cells. Mol Cancer Res. 2013;11(6):628–637. doi: 10.1158/1541-7786.MCR-12-0544
  37. Poincloux R, Lizarraga F, Chavrier P. Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci. 2009;122(Pt.17):3015–3024. doi: 10.1242/jcs.034561
  38. Akanuma N, Hoshino I, Akutsu Y, Murakami K, Isozaki Y, Maruyama T, Yusup G, Qin W, Toyozumi T, Takahashi M, Suito H, Hu X, Sekino N, Matsubara H. MicroRNA-133a regulates the mRNAs of two invadopodia related proteins, FSCN1 and MMP14, in esophageal cancer. Br J Cancer. 2014;110(1):189–198. doi: 10.1038/bjc.2013.676
  39. Малахова ЕВ, Кондакова ИВ, Черемисина ОВ, Какурина ГВ, Меньшиков КЮ. Экспрессия генов матриксных металлопротеиназ и их тканевых ингибиторов в тканях опухолей у больных раком гортани и гортаноглотки. Сибирский онкологический журнал. 2012;1:36–40.
  40. Katayama A, Bandoh N, Kishibe K, Takahara M, Ogino T, Nonaka S. Expressions of matrix metalloproteinases in early stage oral squamous cell carcinoma as predictive indicators for tumor metastases and prognosis. Clin Cancer Res. 2004;10:634–640. doi: 10.1158/1078-0432.CCR-0864-02
  41. Клишо ЕВ, Кондакова ИВ, Чойнзонов ЕЛ, Васильева ОС. Прогностическая значимость протеаз у больных плоскоклеточными карциномами головы и шеи. Сибирский научный медицинский журнал. 2005;25(2):82–91.
  42. Gu Y, Lee W, Shena J. Site-2 protease responds to oxidative stress and regulates oxidative injury in mammalian cells. Sci Rep. 2014;4:6268. doi: 10.1038/srep06268
  43. Rosenblat M, Draganov D, Watson CE, Bisgaier CL, La Du BN, Aviram M. Mouse macrophage paraoxonase-2 activity is increased whereas cellular paraoxonase-3 activity is decreased under oxidative stress. Arterioscler Thromb Vasc Biol. 2003;23:468–474. doi: 10.1161/01.ATV.0000059385.95664.4D
  44. Кондакова ИВ, Какурина ГВ, Смирнова ЛП, Борунов ЕВ. Регуляция пролиферации и апоптоза опухолевых клеток свободными радикалами. Сибирский онкологический журнал. 2005;1:58–61.
  45. Кондакова ИВ, Загребельная ГВ. Влияние комбинации пероксидных радикалов с оксидом азота на синтез ДНК в опухолевых клетках. Биомедицинская химия. 2004;50(6):576–582.
  46. Freeman M. Rhomboid proteases and their biological functions. Annu Rev Genet. 2008;42:191–210. doi: 10.1146/annurev.genet.42.110807.091628
  47. Cheng TL, Lai CH, Jiang SJ, Hung JH, Liu SK, Chang BI, Shi GY, Wu HL. RHBDL2 Is a Critical Membrane Protease for Anoikis Resistance in Human Malignant Epithelial Cells. Scientific World Journal. 2014;2014:ID 902987.
  48. Zou H, Thomas SM, Yan ZW, Grandis JR, Vogt A, Li LY. Human rhomboid family-1 gene RHBDF1 participates in GPCR-mediated transactivation of EGFR growth signals in head and neck squamous cancer cells. FASEB J. 2009;23(2):425–432. doi: 10.1096/fj.08-112771
  49. Spirina LV, Yunusova NV, Kondakova IV, Kolomiets LA, Koval VD, Chernyshova AL, Shpileva OV. Association of growth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer. Molecular Biology Reports. 2012;39:8655–8662. doi: 10.1007/s11033-012-1720-y
  50. Спирина ЛВ, Кондакова ИВ. Роль внутриклеточного спе-цифического протеолиза в онкогенезе. Вопросы онкологии. 2008;54(6):690–694.
  51. Спирина ЛВ, Кондакова ИВ, Чойнзонов ЕЛ, Шарова НП, Чижевская СЮ, Шишкин ДА. Активность и субъединичный состав протеасом в плоскоклеточных карциномах головы и шеи. Бюллетень экспериментальной биологии и медицины. 2010;149(1):89–92.
  52. Spirina LV, Kondakova IV, Choynzonov EL, Chigevskaya SY, Shishkin DA, Kulbakin DY. Expression of vascular endotelian growth factor and transcription factors HIF-1, NF-KB expression in squamous cell carcinoma of head and neck; association with proteasome and calpain activities. J Cancer Res Clin Oncol. 2013;139:625–633. doi: 10.1007/s00432-012-1366-0
  53. Zheng M, McKeown-Longo PJ. Cell adhesion regulates Ser/Thr phosphorylation and proteasomal degradation of HEF1. J Cell Sci. 2006;119(Pt.1):96–103. doi: 10.1242/jcs.02712
  54. Lucas JT Jr., Salimath BP, Slomiany MG, Rosenzweig SA. Regulation of invasive behavior by vascular endothelial growth factor is HEF1-dependent. Oncogene. 2010;29(31):4449–4459. doi: 10.1038/onc.2010.185
  55. Какурина ГВ, Кондакова ИВ, Чойнзонов ЕЛ, Шишкин ДА, Черемисина ОВ. Особенности протеома сыворотки крови больных плоскоклеточными карциномами головы и шеи. Сибирский онкологический журнал. 2013;2(56):62–66.
  56. Pop C, Salvesen GS. Human Caspases: Activation, Specificity, and Regulation. J Biol Chem. 2009;284:21777–21781. doi: 10.1074/jbc.R800084200
  57. Miura M. Apoptotic and nonapoptotic caspase functions in animal development. Cold Spring Harb Perspect Biol. 2012;4(10). doi: 10.1101/cshperspect.a008664
  58. Li C, Egloff AM, Sen M, Grandis JR, Johnson DE. Caspase-8 mutations in head and neck cancer confer resistance to death receptor-mediated apoptosis and enhance migration, invasion, and tumor growth. Mol Oncol. 2014;8(7):1220–1230. doi: 10.1016/j.molonc.2014.03.018
  59. Harrison LB. Head and Neck Cancer: A Multidisciplinary Approach. Ed. Louis BH, Roy BS, Waun KH. 2013. NY: Lippincott Williams & Wilkins. 2004. 1077 р.
  60. Palavalli MH, Natarajan SS, Wang TT, Krishnan HB. Imbibition of Soybean Seeds in Warm Water Results in the Release of Copious Amounts of Bowman Birk Protease Inhibitor, a Putative Anticarcinogenic Agent. J Agric Food Chem. 2012;60(12):3135–3143. doi: 10.1021/jf205308w
  61. Armstrong WB, Taylor TH, Kennedy AR, Melrose RJ, Messadi DV, Gu M, Le AD, Perloff M, Civantos F, Goodwin WJ, Wirth LJ, Kerr AR, Meyskens FL Jr. Bowman birk inhibitor concentrate and oral leukoplakia: a randomized phase IIb trial. Cancer Prev Res (Phila). 2013;6(5):410–418. doi: 10.1158/1940-6207.CAPR-13-0004
  62. Кондакова ИВ, Клишо ЕВ, Савенкова ОВ, Шишкин ДА, Чойнзонов ЕЛ. Патогенетическая значимость системы матриксных металлопротеиназ при плоскоклеточном раке головы и шеи. Сибирский онкологический журнал. 2011;1:29–33.
  63. Gilles C, Polette M, Coraux C. Contribution of MT1-MMP and of human laminin-5 γ2 chain degradation to mammary epithelial cell migration. J Cell Sci. 2001;114:2967–2976.
  64. Мнихович МВ, Циперович К, Яхонсон М, Гитерман Ц, Гаврилюк АА, Фомина ЛВ, Гуминский ЮИ, Вернигородский СВ, Тернов ММ, Мигляс ВГ. Межклеточные взаимодействия при инвазии клеток: морфологические и молекулярно-биологические особенности. Вісник морфології. 2013;19(1):198–208.
  65. Jiao Y, Feng X, Zhan Y. Wang R, Zheng S, Liu W, Zeng X. Matrix metalloproteinase-2 Promotes αvβ3 Integrin Mediated Adhesion and Migration of Human Melanoma Cells by Cleaving Fibronectin. PLoS One. 2012;7(7):e41591. doi: 10.1371/journal.pone.0041591
  66. Nawrocki-Raby B, Gilles Ch, Polette M, Martinella-Catusse C, Bonnet N, Puchelle E, Foidart JM, Van Roy F, Birembaut P. E-Cadherin Mediates MMP Down-Regulation in Highly Invasive Bronchial Tumor Cells. Am J Pathol. 2003;163(2):653–661. doi: 10.1016/S0002-9440(10)63692-9
  67. Kessenbrock K, Plaks V, Werb Z. Matrix Metalloproteinases: Regulators of the Tumor Microenvironment. Cell. 2010;141(1):52–67. doi: 10.1016/j.cell.2010.03.015
  68. Xie SS, Hu F, Tan M, Duan YX, Song XL, Wang CH. Relationship between expression of matrix metalloproteinase-9 and adenylyl cyclase-associated protein 1 in chronic obstructive pulmonary disease. J Int Med Res. 2014;42(6):1272–1284. doi: 10.1177/0300060514548290
  69. Hu Y, Xu S, Jin W, Yi Q, Wei W. Effect of the PTEN gene on adhesion, invasion and metastasis of osteosarcoma cells. Oncol Rep. 2014;32(4):1741–1747. doi: 10.3892/or.2014.3362
  70. Какурина ГВ, Кондакова ИВ, Черемисина ОВ, Шишкин ДА, Чойнзонов ЕЛ. Аденилил-циклаза-ассоциированный протеин-1 в развитии плоскоклеточных карцином головы и шеи. Бюллетень экспериментальной биологии и медицины. 2015;160(11):648–651.
  71. Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci. 2002;115(Pt.19):3719–3727. doi: 10.1242/jcs.00063
  72. Sawicki G. Intracellular regulation of matrix metalloproteinase-2 activity: new strategies in treatment and protection of heart subjected to oxidative stress. Scientifica (Cairo). 2013;2013:130451. doi: 10.1155/2013/130451. doi: 10.1155/2013/130451
  73. Hockenbery DM. MMPs in Unusual Places. Am J Pathol. 2006;169:1101–1103. doi: 10.2353/ajpath.2006.060553
  74. Кондакова ИВ, Какурина ГВ, Спирина ЛВ, Черемисина ОВ, Шишкин ДА. Оценка внеклеточного и внутриклеточного протеолиза при предопухолевых и опухолевых заболеваниях гортани. Сибирский онкологический журнал. 2014;3:45–50.
  75. Awasthi N, Wang-Su ST, Wagner BJ. Downregulation of MMP-2 and 9 by proteasome inhibition: a possible mechanism to decrease LEC migration and prevent posterior capsular opacification. Invest. Ophthalmol Vis. Sci. 2008;49(5):1998–2003. doi: 10.1167/iovs.07-0624
  76. Popp O, Heidinger M, Ruiz-Heinrich L. The calpastatinderived calpain inhibitor CP1B reduces mRNA expression of matrix metalloproteinase-2 and 9 and invasion by leukemic THP-1 cells. Biol Chem. 2003;384:951–958. doi: 10.1515/BC.2003.107
  77. Jin X, Yagi M, Akiyama N, Hirosaki T, Higashi S, Lin CY, Dickson RB, Kitamura H, Miyazaki K. Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer Sci. 2006;97(12):1327–1334. doi: 10.1111/j.1349-7006.2006.00328.x
  78. Uhland K. Matriptase and its putative role in cancer. Cell Mol Life Sci. 2006;63(24):2968–2978. doi: 10.1007/s00018-006-6298-x
  79. Milner JM, Patel A, Davidson RK, Swingler TE, Desilets A, Young DA Kelso EB, Donell ST, Cawston TE, Clark IM, Ferrell WR, Plevin R, Lockhart JC, Leduc R, Rowan AD. Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis. Arthritis Rheum. 2010;62(7):1955–1966. doi: 10.1002/art.27476
  80. Domoto T, Takino T, Guo L, Sato H. Cleavage of hepatocyte growth factor activator inhibitor-1 by membrane-type MMP-1 activates matriptase. Cancer Sci. 2012;103(3):448–455. doi: 10.1111/j.1349-7006.2011.02162.x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies