Comparison Study of Oropharyngeal Microbiota in Case of Bronchial Asthma and Chronic Obstructive Pulmonary Disease in Different Severity Levels

Cover Page


Cite item

Full Text

Abstract

BackgraundThe result of comparative study of oropharyngeal microbiota taxonomic composition in patients with different severity level of bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD) is presented in this paper. 

Aims: To compare oropharyngeal microbiota composition in case of bronchial asthma and chronic obstructive pulmonary disease in different severity levels. 

Metods138 patients, 50 with BA and 88 with COPD were studied. For each patient was collected anamnesis vitae, swab from the back of the throat and performed physical examination. High-throughput 16S ribosomal RNA gene sequencing and bioinformatic analysis was employed to characterize the microbial communities. 

ResultsAs a result of the study was found a number of differences on various taxonomic levels in microbiota’s composition within group of patients with different severity level of BA and group of patients with different severity level of COPD and between those groups. COPD patients with GOLD 1–2 in comparison with GOLD 3–4 patiens are marked by prevalence of species Brevibacterium aureum, genus Scardovia, Coprococcus, Haemophilus, Moryella, Dialister, Paludibacter and decrease of Prevotella melaninogenica species. BA patients with severe uncontrolled asthma in comparison with patients which have mild persistent asthma are marked by decrease of Prevotella and increase of species Bifidobacterium longum, Prevotella nanceiensis, Neisseria cinerea, Aggregatibacter segnis and genus Odoribacter, Alloiococcus, Lactobacillus, Megasphaera, Parvimonas, Sneathia. Patient’s microbiota in BA group in comparison with COPD group is characterized by the prevalence of Prevotella melaninogenica and genus Selenomonas, Granulicatella и Gemella, and decrease of Prevotella nigrescens, Haemophilus influenza and genus Aggregatibacter, Alloiococcus, Catonella, Mycoplasma, Peptoniphilus и Sediminibacterium. There are no differences between microbiota composition in case of severe uncontrolled BA and very severe COPD. 

ConclusionLack of differences in oropharyngeal microbiota taxonomic composition between patients with severe uncontrolled BA and very severe COPD allow us to suggest a similarity of bronchopulmonary system condition in case of diseases' severe stages.

About the authors

Ludmila Mikhailovna Ogorodova

Siberian State Medical University

Email: lm-ogorodova@mail.ru
доктор медицинских наук, профессор, член-корреспондент РАМН, заведующая кафедрой факультетской педиатрии с курсом детских болезней лечебного факультета ГБОУ ВПО «Сибирский государственный медицинский университет» Минздрава России, заместитель министра науки и образования Российской Федерации Russian Federation

Sergey Vyacheslavovich Fedosenko

Siberian State Medical University

Author for correspondence.
Email: s-fedosenko@mail.ru
кандидат медицинских наук, докторант кафедры госпитальной терапии с курсом физической реабилитации и спортивной медицины ГБОУ ВПО «Сибирский государственный медицинский университет» Минздрава России Russian Federation

Anna Sergeevna Popenko

Scientific Research Institute of Physical-Chemical Medicine

Email: kirika77@gmail.com
лаборант лаборатории биоинформатики ФГБУН «Научно-исследовательский институт физико-химической медицины» ФМБА России Russian Federation

Vyacheslav Alekseevich Petrov

Siberian State Medical University

Email: vyacheslav.a.petrov@mail.ru

младший научный сотрудник центральной научно-исследовательской лаборатории ГБОУ ВПО «Сибирский государственный медицинский университет» Минздрава России 

Russian Federation

Alexandr Viktorovich Tyakht

Scientific Research Institute of Physical-Chemical Medicine

Email: at@niifhm.ru
кандидат биологических наук, младший научный сотрудник лаборатории биоинформатики ФГБУН «Научно-исследовательский институт физико-химической медицины» ФМБА России Russian Federation

Irina Vladimirovna Saltykova

Siberian State Medical University

Email: ira.salticova@mail.ru
кандидат медицинских наук, научный сотрудник Центральной научно-исследовательской лаборатории ГБОУ ВПО «Сибирский государственный медицинский университет» Минздрава России Russian Federation

Ivan Anatolievich Deyev

Siberian State Medical University

Email: ivandeyev@yandex.ru
доктор медицинских наук, ассистент кафедры факультетской педиатрии с курсом детских болезней лечебного факультета ГБОУ ВПО «Сибирский государственный медицинский университет» Минздрава России Russian Federation

Evgeny Sergeevich Kulikov

Siberian State Medical University

Email: evgeny.s.kulikov@gmail.com
доктор медицинских наук, доцент кафедры общей врачебной практики и поликлинической терапии ГБОУ ВПО «Сибирский государственный медицинский университет» Минздрава России Russian Federation

Natalia Aleksandrovna Kirillova

Siberian State Medical University

Email: kirillova@mail.ru
кандидат медицинских наук, ассистент кафедры общей врачебной практики и поликлинической терапии ГБОУ ВПО «Сибирский государственный медицинский университет» Минздрава России Russian Federation

Vadim Markovich Govorun

Scientific Research Institute of Physical-Chemical Medicine;
Kazan Federal University

Email: niifhm@fmbamail.ru
доктор биологических наук, профессор, член-корреспондент РАН, заместитель директора по научной работе ФГБУН «Научно-исследовательский институт физико-химической медицины» ФМБА России, главный научный сотрудник научно-исследовательской лаборатории «Омиксные технологии» Института фундаментальной медицины и биологии Казанского (Приволжского) федерального университета Russian Federation

Elena Sergeevna Kostryukova

Scientific Research Institute of Physical-Chemical Medicine;
Kazan Federal University

Email: el-es@yandex.ru

 

 

Russian Federation

References

  1. European Respiratory Society. European Lung White Book: Huddersfield, European Respiratory Society Journals. Ltd. 2003.
  2. Burgel PR, Paillasseur JL, Roche N. Identification of clinical phenotypes using cluster analyses in COPD patients with multiple comorbidities. Biomed Res Int. 2014;2014:420134. doi: 10.1155/2014/420134
  3. Cénit MC, Matzaraki V, Tigchelaar EF, Zhernakova A. Biochim Biophys Acta. 2014;1842(10):1981–1992. doi: 10.1016/j.bbadis.2014.05.023
  4. Spasova DS, Charles D. Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Surh Front Immunol. 2014;5:318. doi: 10.3389/fimmu.2014.00318.
  5. Park H, Shin JW, Park SG, Kim W. Microbial communities in the upper respiratory tract of patients with asthma and chronic obstructive pulmonary disease. PLoS One. 2014;9(10):e109710. doi: 10.1371/journal.pone.0109710.
  6. Hamady M, Knight R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res. 2009;19(7):1141–1152. doi: 10.1101/gr.085464.108. Epub 2009 Apr 21.
  7. Sze MA, Hogg JC and Sin DD. Bacterial microbiome of lungs in COPD. Int J Chron Obstruct Pulmon Dis. 2014;9:229–238. doi: 10.2147/COPD.S38932.
  8. Куницина ЮЛ, Шмелев ЕИ. Противовоспалительная терапия больных при хронической обструктивной болезни легких. Пульмонология. 2003;2:111–116.
  9. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6. doi: 10.1038/nmeth.f.303.
  10. DeSantis TZ, Hugenholtz P, Larsen N. Greengenes, a chimera checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–6002.
  11. Paulson JN, Pop M, Bravo HC. MetagenomeSeq: Statistical analysis for sparse high-throughput sequncing. Bioconductor package. URL:http://www.bioconductor.org/packages/release/bioc/html/metagenomeSeq.html (Available: 22.11.2015).
  12. Hosoki K, Nakamura A, Kainuma K, Sugimoto M, Nagao M, Hiraguchi Y, Tanida H, Tokuda R, Wada H, Nobori T, Suga S, Fujisawa T. Differential activation of eosinophils by bacteria associated with asthma. Int Arch Allergy Immunol. 2013;161(Suppl.2):16–22. doi: 10.1159/000350338
  13. Alauzet C, Mory F, Carlier JP, Marchandin H, Jumas-Bilak E, Lozniewski A. Prevotella nanceiensis sp. nov., isolated from human clinical samples. Int J Syst Evol Microbiol. 2007;57(Pt.10):2216–2220. doi: 10.1099/ijs.0.65173-0.
  14. Larsen JM, Musavian HS, Butt TM, Ingvorsen C, Thysen AH, Brix S. Chronic obstructive pulmonary disease and asthma associated Proteobacteria, but not commensal Prevotella spp., promote toll like receptor 2 independent lung inflammation and pathology. Immunology. 2015;144(2):333–42. doi: 10.1111/imm.12376.
  15. Alkhouri H, Rumzhum NN, Rahman MM, Fitz Patrick M, de Pedro M, Oliver BG, Bourke JE, Ammit AJ. TLR2 activation causes tachyphylaxis to β2-agonists in vitro and ex vivo: modelling bacterial exacerbation. Allergy. 2014;69(9):1215–22. doi: 10.1111/all.12449.
  16. Melli LC, do Carmo-Rodrigues MS, Araújo-Filho HB, Solé D, de Morais MB. Intestinal microbiota and allergic diseases: A systematic review. Allergol Immunopathol (Madr). 2015. doi: 10.1016/j.aller.2015.01.013 [Epub ahead of print].
  17. Ковалева BB, Андреева ЗМ, Федосеева ВН, Читаева ВГ. Выделение и идентификация нейссерий при бронхиальной астме. Журнал микробиологии, эпидемиологии и иммунобиологии. 1975;8:59–62.
  18. Kamar N, Chabbert V, Ribes D, Chabanon G, Faguer S, Mari A, Guitard J, Durand D, Rostaing L. Neisseria cinerea induced pulmonary cavitation in a renal transplant patient. Nephrol Dial Transplant. 2007;22(7):2099–2100.
  19. Charlson ES, Chen J, Custers-Allen R, Bittinger K, Li H, Sinha R, Hwang J, Bushman FD, Collman RG. Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS One. 2010;5(12):e15216. doi: 10.1371/journal.pone.0015216.
  20. Oettinger-Barak O, Sela MN, Sprecher H, Machtei EE. Clinical and microbiological characterization of localized aggressive periodontitis: a cohort study. Aust Dent J. 2014;59(2):165–171. doi: 10.1111/adj.12165.
  21. Nagasawa Y, Iio K, Fukuda S, Date Y, Iwatani H, Yamamoto R, Horii A, Inohara H, Imai E, Nakanishi T, Ohno H, Rakugi H, Isaka Y. Periodontal disease bacteria specific to tonsil in IgA nephropathy patients predicts the remission by the treatment. PLoS One. 2014;9(1):e81636. doi: 10.1371/journal.pone.0081636.
  22. Tan L, Wang H, Li C, Pan Y. 16S rDNA based metagenomic analysis of dental plaque and lung bacteria in patients with severe acute exacerbations of chronic obstructive pulmonary disease. J Periodontal Res. 2014;49(6):760–769. doi: 10.1111/jre.12159.
  23. Kumar PS, Griffen AL, Moeschberger ML, Leys EJ. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J Clin Microbiol. 2005;43(8):3944–3955.
  24. Sze MA, Dimitriu PA, Suzuki M, McDonough JE, Campbell JD, Brothers JF, Erb-Downward JR, Huffnagle GB, Hayashi S, Elliott WM, Cooper J, Sin DD, Lenburg ME, Spira A, Mohn WW, Hogg JC. Host Response to the Lung Microbiome in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2015;192(4):438–445. doi: 10.1164/rccm.201502–0223OC.
  25. De Schutter I, Dreesman A, Soetens O, De Waele M, Crokaert F, Verhaegen J, Piérard D, Malfroot A. In young children, persistent wheezing is associated with bronchial bacterial infection: a retrospective analysis. BMC Pediatr. 2012;12:83. doi: 10.1186/1471-2431-12-83.
  26. Chen S, Dong YH, Chang C, Deng Y, Zhang XF, Zhong G, Song H, Hu M, Zhang LH. Characterization of a novel cyfluthrin degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway. Bioresour Technol. 2013;132:16–23. doi: 10.1016/j.biortech.2013.01.002.
  27. Mamane A, Baldi I, Tessier JF, Raherison C, Bouvier G. Occupational exposure to pesticides and respiratory health. Eur Respir Rev. 2015;24(136):306–319. doi: 10.1183/16000617.00006014.
  28. Thomas AM, Gleber-Netto FO, Fernandes GR, Amorim M, Barbosa L.F, Francisco AL, de Andrade AG, Setubal JC, Kowalski LP, Nunes DN, Dias-Neto E. Alcohol and tobacco consumption affects bacterial richness in oral cavity mucosa biofilms. BMC Microbiol. 2014;14:250. doi: 10.1186/s12866-014-0250-2.
  29. Finney LJ, Ritchie A, Pollard E, Johnston SL, Mallia P. Lower airway colonization and inflammatory response in COPD: a focus on Haemophilus influenzae. Int J Chron Obstruct Pulmon Dis. 2014;9:1119–1132. doi: 10.2147/COPD.S54477.
  30. Tufvesson E, Bjermer L, Ekberg M. Patients with chronic obstructive pulmonary disease and chronically colonized with Haemophilus influenzae during stable disease phase have increased airway inflammation. Int J Chron Obstruct Pulmon Dis. 2015;10:881–889. doi: 10.2147/COPD.S78748.
  31. Larsen JM, Steen-Jensen DB, Laursen JM, Søndergaard JN, Musavian HS, Butt TM, Brix S. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota. PLoS One. 2012;7(2):e31976. doi: 10.1371/journal.pone.0031976.
  32. Bonhoeffer J, Bär G, Riffelmann M, Solèr M, Heininger U. The role of Bordetella infections in patients with acute exacerbation of chronic bronchitis. Infection. 2005;33(1):13–17.
  33. Li Y, He J, He Z, Zhou Y, Yuan M, Xu X, Sun F, Liu C, Li J, Xie W, Deng Y, Qin Y, VanNostrand JD, Xiao L, Wu L, Zhou J, Shi W, Zhou X. Phylogenetic and functional gene structure shifts of the oral microbiomes in periodontitis patients. ISME J. 2014;8(9):1879–1891. doi: 10.1038/ismej.2014.28.
  34. Haffajee AD, Socransky SS. Relationship of cigarette smoking to the subgingival microbiota. J Clin Periodontol. 2001;28(5):377–388.
  35. Tan L, Wang H, Li C, Pan Y. 16S rDNA-based metagenomic analysis of dental plaque and lung bacteria in patients with severe acute exacerbations of chronic obstructive pulmonary disease. J Periodontal Res. 2014;49(6):760–769. doi: 10.1111/jre.12159.
  36. Kucukcoskun M, Baser U, Oztekin G, Kiyan E, Yalcin F. Initial periodontal treatment for prevention of chronic obstructive pulmonary disease exacerbations. J Periodontol. 2013;84(7):863–870. doi: 10.1902/jop.2012.120399.
  37. Hyman JJ, Reid BC. Cigarette smoking, periodontal disease: and chronic obstructive pulmonary disease. J Periodontol. 2004;75:9–15.
  38. Medikeri RS, Lele SV, Jain PM, Mali P, Medikeri MR. Quantification of Selenomonas sputigena in Chronic Periodontitis in Smokers Using 16S rDNA Based PCR Analysis. J Clin Diagn Res. 2015;9(4):ZC13–17. doi: 10.7860/JCDR/2015/12550.5782.
  39. Ashhurst-Smith C, Hall ST, Burns CJ, Stuart J, Blackwell CC. In vitro inflammatory responses elicited by isolates of Alloiococcus otitidis obtained from children with otitis media with effusion. Innate Immun. 2014;20(3):320–326. doi: 10.1177/1753425913492181.
  40. Ulger-Toprak N, Lawson PA, Summanen P, O’Neal L, Finegold SM. Peptoniphilus duerdenii sp. nov. and Peptoniphilus koenoeneniae sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol. 2012;62(Pt.10):2336–2341. doi: 10.1099/ijs.0.031997-0.
  41. Jung MY, Cho JH, Shin Y, Paek J, Park IS, Kim JS, Paek J, Park IS, Kim JS, Kim W, Ma JY, Park SJ, Chang YH. Anaerobe. 2014;30:30–34. doi: 10.1016/j.anaerobe.2014.07.005.
  42. Wang H, Hu C, Hu X, Yang M, Qu J. Water Res. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system. 2012;46(4):1070–1078. doi: 10.1016/j.watres.2011.12.001.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies