Microvesicles of leukocyte origin

Cover Page


Cite item

Full Text

Abstract

Microvesicles are a new field of biological research. They are subcellular structures ranging in size from 100 to 1000 nm and found in practically all human biological fluids. Their sources are different cells. Microvesicles have a diverse internal composition and carry a wide spectrum of molecules on their surface, which determines their participation in physiological and pathological processes. Their assumed role of biological markers of diseases has aroused great interest. At the present time, there is a lot of data in the world literature about microvesicles of platelets and endothelial cells, and there is practically no data about microvesicles of leukocytes. In this regard, the purpose of the given review was to summarize the data about microvesicles of leukocytes. The review presents data about source cells, internal and superficial composition of leukocytes’ microvesicles, their interaction with various cells, and involvement in physiological and pathological processes. Further study of microvesicles will make it possible to clarify their role in normal and pathological conditions, the possibility of using them as vectors of diseases and carriers of various biologically active molecules.

About the authors

Kseniya L. Markova

The Research Institute of Obstetrics, Ginecology and Reproductology named after D.O. Ott

Email: kseniyabelyakova129@gmail.com
ORCID iD: 0000-0003-2748-3543

Junior research, Cell Interactions Laboratory, Department of Immunology and Cell Interactions.

Saint-Petersburg

 

SPIN ID: 4917-8153

Russian Federation

Igor U. Kogan

The Research Institute of Obstetrics, Ginecology and Reproductology named after D.O. Ott

Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900

Professor, MD, corresponding member of the RAS, temporarily assuming the responsibilities of the director.

Saint-Petersburg

SPIN-код: 6572-6450

 

Russian Federation

Anastasia R. Sheveleva

The Research Institute of Obstetrics, Ginecology and Reproductology named after D.O. Ott

Email: anastasiasheveleva075@gmail.com
ORCID iD: 0000-0003-2126-880X

Researcher, Cell Interactions Laboratory, Department of Immunology and Cell Interactions.

 Saint-Petersburg

SPIN ID:1741-9092 

Russian Federation

Valentina A. Mikhailova

The Research Institute of Obstetrics, Ginecology and Reproductology named after D.O. Ott

Email: mva_spb@mail.ru
ORCID iD: 0000-0003-1328-8157

Senior researcher, Cell Interactions Laboratory, Department of Immunology and Cell Interactions, PhD.

SPINID: 1749-5100

 

 

Saint-Petersburg

 

 

Russian Federation

Sergey A. Selkov

The Research Institute of Obstetrics, Ginecology and Reproductology named after D.O. Ott

Email: selkovsa@mail.ru
ORCID iD: 0000-0003-1560-7529

Professor, MD, Head of Immunology and Cell Interactions Department.

Saint-Petersburg

SPIN ID: 7665-0594

 

Russian Federation

Dmitry I. Sokolov

The Research Institute of Obstetrics, Ginecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: falcojugger@yandex.ru
ORCID iD: 0000-0002-5749-2531

Doctor of Biological Sciences, Head of Cell Interactions Laboratory.

3, Mendeleyevskaya line, 199034 Saint-Petersburg

 

SPIN ID: 3746-0000

Russian Federation

References

  1. Daubeuf S, Aucher A, Bordier C, et al. Preferential transfer of certain plasma membrane proteins onto T and B cells by trogocytosis. PloS One. 2010;5(1):e8716. doi: 10.1371/journal.pone.0008716.
  2. Sedgwick AE, D’Souza-Schorey C. The biology of extracellular microvesicles. Traffic. 2018;19(5):319–327. doi: 10.1111/tra.12558.
  3. Todorova D, Simoncini S, Lacroix R, et al. Extracellular vesicles in angiogenesis. Circ Res. 2017;120(10):1658–1673. doi: 10.1161/CIRCRESAHA.117.309681.
  4. Sokolov DI, Ovchinnikova OM, Korenkov DA, et al. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Transl Res. 2016;170:112–123. doi: 10.1016/j.trsl.2014.11.009.
  5. Angelillo-Scherrer A. Leukocyte-derived microparticles in vascular homeostasis. Circ Res. 2012;110(2):356–369. doi: 10.1161/CIRCRESAHA.110.233403.
  6. György B, Szabó T, Pásztói M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667–2688. doi: 10.1007/s00018-011-0689-3.
  7. Distler JH, Huber LC, Gay S, et al. Microparticles as mediators of cellular cross-talk in inflammatory disease. Autoimmunity. 2006;39(8):683–690. doi: 10.1080/08916930601061538.
  8. Halim AT, Ariffin NA, Azlan M. Review: the multiple roles of monocytic microparticles. Inflammation. 2016;39(4):1277–1284. doi: 10.1007/s10753-016-0381-8.
  9. Mikhailova VA, Ovchinnikova OM, Zainulina MS, et al. Detection of microparticles of leukocytic origin in the peripheral blood in normal pregnancy and preeclampsia. Bull Exp Biol Med. 2014;157(6):751–756. doi: 10.1007/s10517-014-2659-x.
  10. Bernimoulin M, Waters EK, Foy M, et al. Differential stimulation of monocytic cells results in distinct populations of microparticles. J Thromb Haemost. 2009;7(6):1019–1028. doi: 10.1111/j.1538-7836.2009.03434.x.
  11. Timar CI, Lorincz AM, Csepanyi-Komi R, et al. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood. 2013;121(3):510–518. doi: 10.1182/blood-2012-05-431114.
  12. Johnson BL, Kuethe JW, Caldwell CC. Neutrophil derived microvesicles: emerging role of a key mediator to the immune response. Endocr Metab Immune Disord Drug Targets. 2014;14(3):210–217. doi: 10.2174/1871530314666140722083717.
  13. van der Pol E, Hoekstra AG, Sturk A, et al. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010;8(12):2596–2607. doi: 10.1111/j.1538-7836.2010.04074.x.
  14. van der Pol E, Coumans FA, Grootemaat AE, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014;12(7):1182–1192. doi: 10.1111/jth.12602.
  15. Pugholm LH, Baek R, Sondergaard EK, et al. Phenotyping of leukocytes and leukocyte-derived extracellular vesicles. J Immunol Res. 2016;2016:6391264. doi: 10.1155/2016/6391264.
  16. Gasser O, Schifferli JA. Microparticles released by human neutrophils adhere to erythrocytes in the presence of complement. Exp Cell Res. 2005;307(2):381–387. doi: 10.1016/j.yexcr.2005.03.011.
  17. Yang JM, Gould SJ. The cis-acting signals that target proteins to exosomes and microvesicles. Biochem Soc Trans. 2013;41(1):277–282. doi: 10.1042/BST20120275.
  18. Dalli J, Montero-Melendez T, Norling LV, et al. Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties. Mol Cell Proteomics. 2013;12(8):2205–2219. doi: 10.1074/mcp.M113.028589.
  19. Pluskota E, Woody NM, Szpak D, et al. Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles. Blood. 2008;112(6):2327–2335. doi: 10.1182/blood-2007-12-127183.
  20. Gasser O, Schifferli JA. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood. 2004;104(8):2543–2548. doi: 10.1182/blood-2004-01-0361.
  21. Pliyev BK, Kalintseva MV, Abdulaeva SV, et al. Neutrophil microparticles modulate cytokine production by natural killer cells. Cytokine. 2014;65(2):126–129. doi: 10.1016/j.cyto.2013.11.010.
  22. Eken C, Gasser O, Zenhaeusern G, et al. Polymorphonuclear neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. J Immunol. 2008;180(2):817–824. doi: 10.4049/jimmunol.180.2.817.
  23. Dalli J, Norling LV, Renshaw D, et al. Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles. Blood. 2008;112(6):2512–2519. doi: 10.1182/blood-2008-02-140533.
  24. Torgersen C, Moser P, Luckner G, et al. Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis. Anesth Analg. 2009;108(6):1841–1847. doi: 10.1213/ane.0b013e318195e11d.
  25. Egorina EM, Sovershaev MA, Olsen JO, Osterud B. Granulocytes do not express but acquire monocyte-derived tissue factor in whole blood: evidence for a direct transfer. Blood. 2008;111(3):1208–1216. doi: 10.1182/blood-2007-08-107698.
  26. Aharon A, Tamari T, Brenner B. Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells. Thromb Haemost. 2008;100(5):878–885. doi: 10.1160/th07-11-0691.
  27. Leroyer AS, Rautou PE, Silvestre JS, et al. CD40 ligand+ microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization. J Am Coll Cardiol. 2008;52(16):1302–1311. doi: 10.1016/j.jacc.2008.07.032.
  28. Mastronardi ML, Mostefai HA, Soleti R, et al. Microparticles from apoptotic monocytes enhance nitrosative stress in human endothelial cells. Fundam Clin Pharmacol. 2011;25(6):653–660. doi: 10.1111/j.1472-8206.2010.00898.x.
  29. Essayagh S, Xuereb JM, Terrisse AD, et al. Microparticles from apoptotic monocytes induce transient platelet recruitment and tissue factor expression by cultured human vascular endothelial cells via a redox-sensitive mechanism. Thromb Haemost. 2007;98(4):831–837. doi: 10.1160/th07-02-0082.
  30. Wen B, Combes V, Bonhoure A, et al. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses. PloS One. 2014;9(3):e91597. doi: 10.1371/journal.pone.0091597.
  31. Sarkar A, Mitra S, Mehta S, et al. Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PloS One. 2009;4(9):e7140. doi: 10.1371/journal.pone.0007140.
  32. Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005;106(5):1604–1611. doi: 10.1182/blood-2004-03-1095.
  33. Nomura S, Kanazawa S, Fukuhara S. Effects of efonidipine on platelet and monocyte activation markers in hypertensive patients with and without type 2 diabetes mellitus. J Hum Hypertens. 2002;16(8):539–547. doi: 10.1038/sj.jhh.1001447.
  34. Ogata N, Nomura S, Shouzu A, et al. Elevation of monocyte-derived microparticles in patients with diabetic retinopathy. Diabetes Res Clin Pract. 2006;73(3):241–248. doi: 10.1016/j.diabres.2006.01.014.
  35. Kornek M, Lynch M, Mehta SH, et al. Circulating microparticles as disease-specific biomarkers of severity of inflammation in patients with hepatitis C or nonalcoholic steatohepatitis. Gastroenterology. 2012;143(2):448–458. doi: 10.1053/j.gastro.2012.04.031.
  36. Pankoui Mfonkeu JB, Gouado I, Fotso Kuate H, et al. Elevated cell-specific microparticles are a biological marker for cerebral dysfunctions in human severe malaria. PloS One. 2010;5(10):e13415. doi: 10.1371/journal.pone.0013415.
  37. Takeshita J, Mohler ER, Krishnamoorthy P, et al. Endothelial cell-, platelet-, and monocyte/macrophage-derived microparticles are elevated in psoriasis beyond cardiometabolic risk factors. J Am Heart Assoc. 2014;3(1):e000507. doi: 10.1161/JAHA.113.000507.
  38. Baka Z, Senolt L, Vencovsky J, et al. Increased serum concentration of immune cell derived microparticles in polymyositis/dermatomyositis. Immunol Lett. 2010;128(2):124–130. doi: 10.1016/j.imlet.2009.12.018.
  39. Nagahama M, Nomura S, Kanazawa S, et al. Significance of anti-oxidized LDL antibody and monocyte-derived microparticles in anti-phospholipid antibody syndrome. Autoimmunity. 2003;36(3):125–131. doi: 10.1080/0891693031000079257.
  40. Shefler I, Salamon P, Reshef T, et al. T cell-induced mast cell activation: a role for microparticles released from activated T cells. J Immunol. 2010;185(7):4206–4212. doi: 10.4049/jimmunol.1000409.
  41. Tesse A, Martinez MC, Hugel B, et al. Upregulation of proinflammatory proteins through NF-kappaB pathway by shed membrane microparticles results in vascular hyporeactivity. Arterioscler Thromb Vasc Biol. 2005;25(12):2522–2527. doi: 10.1161/01.ATV.0000189298.62240.5d.
  42. Soleti R, Benameur T, Porro C, et al. Microparticles harboring Sonic Hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors. Carcinogenesis. 2009;30(4):580–588. doi: 10.1093/carcin/bgp030.
  43. Yang C, Mwaikambo BR, Zhu T, et al. Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. Am J Physiol Regul Integr Comp Physiol. 2008;294(2):R467–476. doi: 10.1152/ajpregu.00432.2007.
  44. Handunnetti S, Polliack A, Tam CS. Microvesicles in chronic lymphocytic leukemia: ready for prime time in the clinic? Leuk Lymphoma. 2017;58(6):1281–1282. doi: 10.1080/10428194.2017.1298756.
  45. Gasser O, Hess C, Miot S, et al. Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp Cell Res. 2003;285(2):243–257. doi: 10.1016/s0014-4827(03)00055-7.
  46. Lacy P. A new way of trapping bugs: neutrophil microvesicles. Blood. 2013;121(3):420–421. doi: 10.1182/blood-2012-11-467803.
  47. Hong Y, Eleftheriou D, Hussain AA, et al. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles. J Am Soc Nephrol. 2012;23(1):49–62. doi: 10.1681/ASN.2011030298.
  48. Lim K, Sumagin R, Hyun YM. Extravasating neutrophil-derived microparticles preserve vascular barrier function in inflamed tissue. Immune Netw. 2013;13(3):102–106. doi: 10.4110/in.2013.13.3.102.
  49. Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74–80. doi: 10.1182/blood-2010-02-258558.
  50. Meziani F, Delabranche X, Asfar P, Toti F. Bench-to-bedside review: circulating microparticles — a new player in sepsis? Crit Care. 2010;14(5):236. doi: 10.1186/cc9231.
  51. Mayr M, Grainger D, Mayr U, et al. Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques. Circ Cardiovasc Genet. 2009;2(4):379–388. doi: 10.1161/CIRCGENETICS.108.842849.
  52. Bardelli C, Amoruso A, Federici Canova D, et al. Autocrine activation of human monocyte/macrophages by monocyte-derived microparticles and modulation by PPARgamma ligands. Br J Pharmacol. 2012;165(3):716–728. doi: 10.1111/j.1476-5381.2011.01593.x.
  53. Neri T, Armani C, Pegoli A, et al. Role of NF-kappaB and PPAR-gamma in lung inflammation induced by monocyte-derived microparticles. Eur Respir J. 2011;37(6):1494–1502. doi: 10.1183/09031936.00023310.
  54. Aleman MM, Gardiner C, Harrison P, Wolberg AS. Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability. J Thromb Haemost. 2011;9(11):2251–2261. doi: 10.1111/j.1538-7836.2011.04488.x.
  55. Hoyer FF, Giesen MK, Nunes Franca C, et al. Monocytic microparticles promote atherogenesis by modulating inflammatory cells in mice. J Cell Mol Med. 2012;16(11):2777–2788. doi: 10.1111/j.1582-4934.2012.01595.x.
  56. Distler JH, Jungel A, Huber LC, et al. The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc Natl Acad Sci U S A. 2005;102(8):2892–2897. doi: 10.1073/pnas.0409781102.
  57. Ярилин А.А. Иммунология. Учебник. — М.: ГЭОТРА-Медиа; 2010. — 752 с.
  58. Agouni A, Mostefai HA, Porro C, et al. Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB J. 2007;21(11):2735–2741. doi: 10.1096/fj.07-8079com.
  59. Lugini L, Cecchetti S, Huber V, et al. Immune surveillance properties of human NK cell-derived exosomes. J Immunol. 2012;189(6):2833–2842. doi: 10.4049/jimmunol.1101988.
  60. Mikhailova VA, Belyakova KL, Vyazmina LP, et al. Evaluation of microvesicles formed by natural killer (NK) cells using flow cytometry. Medical Immunology (Russia). 2018;20(2):251–254. (In Russ). doi: 10.15789/1563-0625-2018-2-251-254.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies