TRANSCRIPTOMICS RESEARCH IN THE CLINICAL AND EXPERIMENTAL INVESTIGATION OF PATHOGENETIC MECHANISMS OF ALIMENTARY OBESITY

Cover Page

Abstract


The review considers the significant role of changes in the transcriptome of organs and tissues for studying the molecular mechanisms of obesity development. Modern methods of transcriptomics including technologies for quantitative RT-PCR and DNA microarrays provided a new approach to the search for sensitive molecular markers as obesity predictors Differential gene expression profiles are mostly organo- and tissue-specific for adipose tissue, liver, brain, and other organs and tissues; can significantly differ in animal in vivo models with genetically determined and dietary induced obesity. At the same time, coordinated regulation is registered in the organs and tissues of expression of extensive groups of genes associated with lipid, cholesterol, and carbohydrate metabolism, the synthesis and circulation of neurotransmitters of dopamine and serotonin, peptide hormones, cytokines which induce systemic inflammation. For systemic regulation mechanisms causing a concerted change in the transcription of tens and hundreds of genes in obesity, the adipokines effects should be pointed out, primarily leptin, as well as pro-inflammatory cytokines, the micro-RNA (miRs) system and central effects developing at NPY/AgRP+ and POMC/CART+ neurons of the arcuate nucleus of the hypothalamus. Results of transcriptomic studies can be used in preclinical trials of new drugs and methods of dietary correction of obesity in animal’s in vivo models, as well as in the search for clinical predictors and markers of metabolic abnormalities in patients with obesity receiving personalized therapy. The main problem of transcriptomic studies in in vivo models is incomplete consistency between the data obtained with full-transcriptional profiling and the results of quantitative RT-PCR expression of individual candidate genes, as well as metabolic and proteomic studies. The identification and elimination of the causes of such discrepancies can be one of the promising areas for improving transcriptomical research.


I. V. Gmoshinski

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Author for correspondence.
Email: gmosh@ion.ru
ORCID iD: 0000-0002-3671-6508

Russian Federation

IvanV. GmoshinskiPhD.

Moscow

S. A. Apryatin

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: apryatin@mail.ru
ORCID iD: 0000-0002-6543-7495

Russian Federation

SergeyA. ApryatinPhD.

Moscow

Kh. Kh. Sharafetdinov

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: sharafandr@mail.ru
ORCID iD: 0000-0001-6061-0095

Russian Federation

Khayder’ Kh. Sharafetdinov - MD, PhD, Professor.

Moscow

D. B. Nikitjuk

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: dimitrynik@mail.ru
ORCID iD: 0000-0002-4968-4517

Russian Federation

Dmitriy B. Nikityuk - MD, PhD, Professor.

Moscow

V. A. Tutelyan

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: tutelyan@ion.ru
ORCID iD: 0000-0002-4164-8992

Russian Federation

Victor A. Tutelyan - MD, PhD, Professor.

Moscow

  1. Swinburn BA, Sacks G, Hall KD, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378(9793):804–814. doi: 10.1016/S0140-6736(11)60813-1.
  2. Imes CC, Burke LE. The obesity epidemic: the United States as a cautionary tale for the rest of the world. Curr Epidemiol Rep. 2014;1(2):82–88. doi: 10.1007/s40471-014-0012-6.
  3. Лапик И.А., Гаппарова К.М., Чехонина Ю.Г., и др. Современные тенденции развития нутригеномики ожирения // Вопросы питания. – 2016. – Т.85. ― №6 – С. 6–13.
  4. who.int [Internet]. Global Health Observatory (GHO) data. World Health Statistics 2012 [cited 2018 May 29]. Available from: http://www.who.int/gho/publications/world_health_statistics/2012/en/.
  5. Jahangir E, De Schutter A, Lavie CJ. The relationship between obesity and coronary artery disease. Transl Res. 2014;164(4):336–344. doi: 10.1016/j.trsl.2014.03.010.
  6. Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013;5(4):1218–1240. doi: 10.3390/nu5041218.
  7. Must A, Spadano J, Coakley EH, et al. The disease burden associated with overweight and obesity. JAMA. 1999;282(16):1523–1529. doi: 10.1001/jama.282.16.1523.
  8. Hjelmborg JV, Fagnani C, Silventoinenetal K. Genetic influences on growth traits of BMI: a longitudinal study of adult twins. Obesity (Silver Spring). 2008;16(4):847–852. doi: 10.1038/oby.2007.135.
  9. Kim Y, Park T. DNA microarrays to define and search for genes associated with obesity. Biotechnol J. 2010;5(1):99–112. doi: 10.1002/biot.200900228.
  10. Cagney G, Park S, Chung C, et al. Human tissue profiling with multidimensional protein identification technology. J Proteome Res. 2005;4(5):1757–1767. doi: 10.1021/pr0500354.
  11. Aitman TJ, Glazier AM, Wallace CA, et al. Identification of Cd36(Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet. 1999;21(1):76–83. doi: 10.1038/5013.
  12. Jiang Y, Harlocker SL, Molesh DA, et al. Discovery of differentially expressed genes in human breast cancer using subtracted cDNA libraries and cDNA microarrays. Oncogene. 2002;21(14):2270–2282. doi: 10.1038/sj.onc.1205278.
  13. Moreno-Aliaga MJ, Marti A, Garcia-Foncillas J, Alfredo Martinez J. DNA hybridization arrays: a powerful technology for nutritional and obesity research. Br J Nutr. 2001;86(2):119–122. doi: 10.1079/BJN2001410.
  14. Brown PO, Hartwell L. Genomics and human disease. Variations on variation. Nat Genet. 1998;18:91–93. doi: 10.1038/ng0298-91.
  15. DeRisi J, Penland L, Brown PO, et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet. 1996;14(4):457–460. doi: 10.1038/ng1296-457.
  16. Soukas A, Cohen P, Socci ND, Friedman JM. Leptin specific patterns of gene expression in white adipose tissue. Genes Dev. 2000;14(8):963–980.
  17. Maebuchi M, Machidori M, Urade R, et al. Low resistin levels in adipose tissues and serum in high-fat fed mice and genetically obese mice: development of an ELISA system for quantification of resistin. Arch Biochem Biophys. 2003;416(2):164–170. doi: 10.1016/S0003-9861(03)00279-0.
  18. Nadler ST, Stoehr JP, Schueler KL, et al. The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc Natl Acad Sci U S A. 2000;97(21):11371–11376. doi: 10.1073/pnas.97.21.11371.
  19. Deng X, Elam MB,Wilcox HG, et al. Dietary olive oil and menhaden oil mitigate induction of lipogenesis in hyperinsulinemic corpulent JCR:LA-cp rats: microarray analysis of lipid-related gene expression. Endocrinology. 2004;145(12):5847–5861. doi: 10.1210/en.2004-0371.
  20. Yang X, Schadt EE,Wang S, et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006;16(8):995–1004. doi: 10.1101/gr.5217506.
  21. Gomez-Ambrosi J, Catalan V, Diez-Caballero A, et al. Gene expression profile of omental adipose tissue in human obesity. FASEB J. 2004;18(1):215–217. doi: 10.1096/fj.03-0591fje.
  22. LeeYH, Nair S, Rousseau E, et al. Microarray profiling of isolated abdominal subcutaneous adipocytes from obese vs non-obese Pima Indians: increased expression of inflammation-related genes. Diabetologia. 2005;48(9):1776–1783. doi: 10.1007/s00125-005-1867-3.
  23. Marrades MP, Milagro FI, Martinez JA, Moreno-Aliaga MJ. Differential expression of aquaporin 7 in adipose tissue of lean and obese high fat consumers. Biochem BiophysRes Commun. 2006;339(3):785–789. doi: 10.1016/j.bbrc.2005.11.080.
  24. Younossi ZM, Gorreta F, Ong JP, et al. Hepatic gene expression in patients with obesity-related nonalcoholic steatohepatitis. Liver Int. 2005;25(4):760–771. doi: 10.1111/j.1478-3231.2005.01117.x.
  25. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–29. doi: 10.1038/75556.
  26. Henegar C, Tordjman J, Achard V, et al Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol. 2008;9(1):R14. doi: 10.1186/gb-2008-9-1-r14.
  27. KuboY, Kaidzu S, Nakajima I, et al. Organization of extracellular matrix components during differentiation of adipocytes in long-term culture. In Vitro Cell Dev Biol Anim. 2000;36(1):38–44. doi: 10.1290/1071-2690(2000)036<0038:OOEMCD>2.0.CO;2.
  28. Han J, Luo T, Gu Y, et al. Cathepsin K regulates adipocyte differentiation: possible involment of type I collagen degradation. Endocr J. 2009;56(1):55–63. doi: 10.1507/endocrj.k08e-143.
  29. Yang RZ Lee MJ, Hu H, et al. Acute-phase serum amyloid A: an inflammatory adipokine and potential link between obesity and its metabolic complications. PLoS Med. 2006;3(6):e287. doi: 10.1371/journal.pmed.0030287.
  30. Taleb S, Lacasa D, Bastard JP, et al. Cathepsin S, a novel biomarker of adiposity: relevance to atherogenesis. FASEB J. 2005;19(11):1540–1542. doi: 10.1371/journal.pmed. 003028710.1096/fj.05-3673fje.
  31. Huang ZH, Luque RM, Kineman RD, Mazzone T. Nutritional regulation of adipose tissue apolipoprotein E expression. Am J Physiol Endocrinol Metab. 2007;293(1):E203–E209 doi: 10.1152/ajpendo.00118.2007.
  32. Forest C, Tordjman J, Glorian M, et al. Fatty acid recycling in adipocytes: a role for glyceroneogenesis and phosphoenolpyruvate carboxykinase. Biochem Soc Trans. 2003;31(Pt 6):1125–1129. doi: 10.1042/bst0311125.
  33. Winnier DA, Fourcaudot M, Norton L, et al. Transcriptomic identification of ADH1B as a novel candidate gene for obesity and insulin resistance in human adipose tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES). PLoS One. 2015;10(4):e0119941. doi: 10.1371/journal.pone.0119941.
  34. Nieman DC, Nehlsen-Cannarella SL, Henson DA, et al. Immune response to obesity and moderate weight loss. Int J Obes Relat Metab Disord. 1996;20(4):353–360.
  35. Lee JH, Han KD, Jung HM, et al. Association between obesity, abdominal obesity, and adiposity and the prevalence of atopic dermatitis in young Korean adults: the Korea National Health and Nutrition Examination Survey 2008–2010. Allergy Asthma Immunol Res. 2016;8(2):107–114. doi: 10.4168/aair.2016.8.2.107.
  36. Charriere G, Cousin B, Arnaud E, et al. Preadipocyte conversion to macrophage. Evidence of plasticity. J Biol Chem. 2003;278(11):9850–9855. doi: 10.1074/jbc.M210811200.
  37. Shi H, Kokoeva MV, Inouye K, et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015–3025. doi: 10.1172/JCI28898.
  38. Midwood K, Sacre S, Piccinini AM, et al, Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med. 2009;15(7):774–780. doi: 10.1038/nm.1987.
  39. Kim JK. Fat uses a TOLL-road to connect inflammation and diabetes. Cell Metab. 2006;4(6):417–419. doi: 10.1016/j.cmet.2006.11.008.
  40. Jain N, Zhang T, Kee WH, et al. Protein kinase C delta associates with and phosphorylates Stat3 in an interleukin-6-dependent manner. J Biol Chem. 1999;274(34):24392–24400. doi: 10.1074/jbc.274.34.24392.
  41. Widberg CH, Newell FS, Bachmann AW, et al. Fibroblast growth factor receptor 1 is a key regulator of early adipogenic events in human preadipocytes. Am J Physiol Endocrinol Metab. 2009;296(1):e121–e131. doi: 10.1152/ajpendo.90602.2008.
  42. Nobrega MA. TCF7L2 and glucose metabolism: time to look beyond the pancreas. Diabetes. 2013;62(3):706–708. doi: 10.2337/db12-1418.
  43. Secher A, Jelsing J, Baquero AF, et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest. 2014;124(10):4473–4488. doi: 10.1172/JCI75276.
  44. Van Can J, Sloth B, Jensen CB, et al. Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults. Int J Obes (Lond). 2014;38(6):784–793. doi: 10.1038/ijo.2013.162.
  45. Ferrante AW, Thearle M, Liao T, Leibel RL. Effects of leptin deficiency and short-term repletion on hepatic gene expression in genetically obese mice. Diabetes. 2001;50(10):2268–2278. doi: 10.2337/diabetes.50.10.2268.
  46. Liang CP, Tall AR. Transcriptional profiling reveals global defects in energy metabolism, lipoprotein, and bile acid synthesis and transport with reversal by leptin treatment in ob/ob mouse liver. J Biol Chem. 2001;276(52):49066–49076. doi: 10.1074/jbc.M107250200.
  47. Kim S, Sohn I, Ahn JI, et al. Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene. 2004;340(1):99–109. doi: 10.1016/j.gene.2004.06.015.
  48. Inoue M, Ohtake T, Motomura W, et al. Increased expression of PPAR-gamma in high fat diet-induced liver steatosis in mice. Biochem Biophys Res Commun. 2005;336(1):215–222. doi: 10.1111/acer.13049.
  49. Patsouris D, Reddy JK, Muller M, Kersten S. Peroxisome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression. Endocrinology. 2006;147(3):1508–1516. doi: 10.1210/en.2005–1132.
  50. Yang RL, Li W, Shi YH, Le GW. Lipoic acid prevents high-fat diet-induced dyslipidemia and oxidative stress: a microarray analysis. Nutrition. 2008;24(6):582–588. doi: 10.1016/j.nut.2008.02.002.
  51. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343(6257):425–430. doi: 10.1038/343425a0.
  52. Ishii T, Itoh K, Takahashi S, et al. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem. 2000;275(21):16023–16029. doi: 10.1074/jbc.275.21.16023.
  53. Cortez-Pinto H, Machado MV. Uncoupling proteins and non-alcoholic fatty liver disease. J Hepatol. 2009;50(5):857–860. doi: 10.1016/j.jhep.2009.02.019.
  54. Апрятин С.А., Трусов Н.В., Балакина А.С., и др. Изменение транскриптомного профиля печени крыс линии Wistar при экспериментальной алиментарной гиперлипидемии / Всероссийская конференция с международным участием «Профилактическая медицина ― 2016»; Ноябрь 15–16, 2016; Санкт-Петербург. ― С. 34–39.
  55. Апрятин С.А., Трусов Н.В., Горбачев А.Ю., и др. Анализ полнотранскриптомного профиля печени мышей линии C57Black/6j при экспериментальной алиментарной гиперлипидемии / Всероссийская конференция с международным участием «Профилактическая медицина ― 2017»; Декабрь 6–7, 2017; Москва. ― С. 49–55.
  56. Glastras SJ, Wong MG, Chen H, et al. FXR expression is associated with dysregulated glucose and lipid levels in the offspring kidney induced by maternal obesity. Nutr Metab. 2015;12:40. doi: 10.1186/s12986-015-0032-3.
  57. Kolehmainen M, Vidal H, Alhava E, Uusitupa MI. Sterol regulatory element binding protein 1c (SREBP-1c) expression in human obesity. Obes Res. 2001;9(11):706–712. doi: 10.1038/oby.2001.95.
  58. Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway in ving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113(10):1408–1418. doi: 10.1172/JCI200421025.
  59. Denhez B, Lizotte F, Guimond M-O, et al. Increased SHP-1 protein expression by high glucose levels reduces nephrin phosphorylation in podocytes. J Biol Chem. 2015;290(1):350–358. doi: 10.1074/jbc.M114.612721.
  60. Gopinath B, Subramanian I, Flood VM, et al. Relationship between breast-feeding and adiposity in infants and preschool children. Public Health Nutr. 2012;15(9):1639–1644. doi: 10.1017/S1368980011003569.
  61. Jenkins NT, Padilla J, Thorne P K, et al. Transcriptome-wide RNA sequencing analysis of rat skeletal muscle feed arteries. I. Impact of obesity. J Appl Physiol. 2014;116(8):1017–1032. doi: 10.1152/japplphysiol.01233.2013.
  62. Ghosh S, Dent R, Harper M-E, et al. Gene expression profiling in whole blood identifies distinct biological pathways associated with obesity. BMC Med Genomics. 2010;3:56. doi: 10.1186/1755-8794-3-56.
  63. Levian C, Ruiz E, Yang X. The pathogenesis of obesity from a genomic and systems biology perspective. Yale J Biol Med. 2014;87(2):113–126.
  64. McMurray F, Church CD, Larder R, et al. Adult onset global loss of the Fto gene alters body composition and metabolism in the mouse. PLoS Genet. 2013;9(1):e1003166. doi: 10.1371/journal.pgen.1003166.
  65. Karra E, O’Daly OG, Choudhury AI, et al. A link between FTO, ghrelin, and impaired brain food-cue responsivity. J Clin Invest. 2013;123(8):3539–3551. doi: 10.1172/JCI44403.
  66. Edlow AG, Guedj F, Pennings JL, et al. Males are from Mars, females are from Venus: sex-specific fetal brain gene expression signatures in a mouse model of maternal diet-induced obesity. Am J Obstet Gynecol. 2016;214(5):623e1–623e10. doi: 10.1016/j.ajog.2016.02.054.
  67. Kruger C, Kumar KG, Mynatt RL, et al. Brain transcriptional responses to high-fat diet in acads-deficient mice reveal energy sensing pathways. PLoS One. 2012;7(8):e41709. doi: 10.1371/journal.pone.0041709.
  68. Watanabe H, Nakano T, Saito R, et al. Serotonin improves high fat diet induced obesity in mice. PLoS One. 2016;11(1):e0147143. doi: 10.1371/journal.pone.0147143.
  69. Namkung J, Kim H, Park S. Peripheral serotonin: a new player in systemic energy homeostasis. Mol Cells. 2015;38(12):1023–1028. doi: 10.14348/molcells.2015.0258.
  70. Vucetic Z, Carlin J, Totoki K, Reyes TM. Epigenetic dysregulation of the dopamine system in diet induced obesity. J Neurochem. 2012;120(6):891–898. doi: 10.1111/j.1471-4159.2012.07649.x.
  71. Lee AK, Mojtahed-Jaberi M, Kyriakou T, et al. Effect of high-fat feeding on expression of genes controlling availability of dopamine in mouse hypothalamus. Nutrition. 2010;26(4):411–422. doi: 10.1016/j.nut.2009.05.007.
  72. Li Y, South T, Han M, et al. High-fat diet decreases tyrosine hydroxylase mRNA expression irrespective of obesity susceptibility in mice. Brain Res. 2009;1268:181–189. doi: 10.1016/j.brainres.2009.02.075.
  73. Li Z, Kelly L, Heiman M, et al. Hypothalamic amylin acts in concert with leptin to regulate food intake. Cell Metab. 2015;22(6):1059–1067. doi: 10.1016/j.cmet.2015.10.012.
  74. Kumar MS, Priyanka J, Prashant M. Microarray evidences the role of pathologic adipose tissue in insulin resistance and their clinical implications. J Obes. 2011;2011:587495. doi: 10.1155/2011/587495.
  75. Gresham D, Dunham MJ, Botstein D. Comparing whole genomes using DNA microarrays. Nature Rev Genet. 2008;9(4):291–302. doi: 10.1038/nrg2335.
  76. MAQC Consortium, Shi L, Reid LH, et al. The microarray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006;24(9):1151–1161. doi: 10.1038/nbt1239.
  77. Miklos GL, Maleszka R. Microarray reality checks in the context of a complex disease. Nature Biotechnol. 2004;22(5):615–621. doi: 10.1038/nbt965.

Views

Abstract - 7

PDF (Russian) - 2

Cited-By


PlumX



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.