Role of MUC1 Expression in Tumor Progression

Cover Page

Cite item


Mucin 1 (MUC1) is a multistructural and multifunctional protein that is involved in regulating diverse cellular activities. This strongly glycosylated transmembrane protein forms a mucous gel on the surface of epithelial cells that protects the cells from injury. MUC1 acts as a signaling molecule and transcription factor modulating metabolism and resistance to bacterial-induced inflammation. This article presents a review of the relationship between structural and functional changes of the MUC1 and the characteristics of cancer cells. The alteration in MUC1 expression level, a number of structural forms, protein glycosylation and localization occurs in cancer cells. These alterations lead to metabolic reprogramming associated with proliferation, resistance to hypoxia and angiogenesis which affects the survival of cancer cells. Furthermore, cancer cells can take advantage of MUC1 interaction with adhesion molecules for invasion and metastasis. Thus, MUC1 plays a key role both in the homeostasis of epithelial cells and in cancer progression. Understanding the role of MUC1 expression in tumor cells survival is important for the development of new monitoring and therapeutic approaches for the treatment MUC1 positive maligancies.

About the authors

A. V. Karaulov

I.M. Sechenov Moscow State Medical University Ministry of Health of Russia;
N.I. Lobachevskiy National Research Nizhny Novgorod State University

Author for correspondence.
ORCID iD: 0000-0002-1930-5424


Nizhniy Novgorod

Russian Federation

N. N. Gurina

N.I. Lobachevskiy National Research Nizhny Novgorod State University

ORCID iD: 0000-0001-8025-7292
Nizhniy Novgorod Russian Federation

D. V. Novikov

N.I. Lobachevskiy National Research Nizhny Novgorod State University

ORCID iD: 0000-0001-7049-6935
Nizhniy Novgorod Russian Federation

S. G. Fomina

N.I. Lobachevskiy National Research Nizhny Novgorod State University

ORCID iD: 0000-0002-6610-1774
Nizhniy Novgorod Russian Federation

V. V. Novikov

N.I. Lobachevskiy National Research Nizhny Novgorod State University

ORCID iD: 0000-0002-2449-7213
Nizhniy Novgorod Russian Federation


  1. Bergstrom KS, Xia LJ. Mucin-type O-glycans and their roles in intestinal homeostasis. Glycobiology. 2013;23(9):1026–1037. doi: 10.1093/glycob/cwt045.
  2. Tailford LE, Crost EH, Kavanaugh D, Juge N. Mucin glycan foraging in the human gut microbiome. Front Genet. 2015;6:81. doi: 10.3389/ fgene.2015.00081.
  3. Corfield AP. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta. 2015;1850(1):236–252. doi: 10.1016/j.bbagen.2014.05.003.
  4. Ambort D, van der Post S, Johansson ME, et al. Function of the CysD domain of the gel-forming MUC2 mucin. Biochem J. 2011;436(1):61– 70. doi: 10.1042/BJ20102066.
  5. Verdugo P. Supramolecular dynamics of mucus. Cold Spring Harb Perspect Med. 2012;2(11):a009597. doi: 10.1101/cshperspect.a009597.
  6. Jonckheere N, Skrypek N, Van Seuningen I. Mucins and pancreatic cancer. Cancers (Basel). 2010;2(4):1794–1812. doi: 10.3390/cancers2041794.
  7. Pelaseyed T, Bergstrom JH, Gustafsson JK, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev. 2014;260(1):8–20. doi: 10.1111/imr.12182.
  8. Joshi S, Kumar S, Choudhury A, et al. Altered Mucins (MUC) trafficking in benign and malignant conditions. Oncotarget. 2014;5(17):7272– 7284. doi: 10.18632/oncotarget.2370.
  9. Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med. 2014;20(6):332–342. doi: 10.1016/j.molmed.2014.02.007.
  10. Levitin F, Stern O, Weiss M, et al. The MUC1 SEA module is a self-cleaving domain. J Biol Chem. 2005;280(39):33374–33386. doi: 10.1074/jbc.M506047200.
  11. Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol. 2008;70:431–457. doi: 10.1146/ annurev.physiol.70.113006.100659.
  12. Parry S, Hanisch FG, Leir SH, et al. N-Glycosylation of the MUC1 mucin in epithelial cells and secretions. Glycobiology. 2006;16(7):623– 634. doi: 10.1093/glycob/cwj110.
  13. Raina D, Kosugi M, Ahmad R, et al. Dependence on the MUC1-C oncoprotein in non-small cell lung cancer cells. Mol Cancer Ther. 2011;10(5):806–816. doi: 10.1158/1535-7163.MCT-10-1050.
  14. Yin L, Kufe D. MUC1-C oncoprotein blocks terminal differentiation of chronic myelogenous leukemia cells by a ROS-mediated mechanism. Genes Cancer. 2011;2(1):56–64. doi: 10.1177/1947601911405044.
  15. Kyo Y, Kato K, Park YS, et al. Antiinflammatory role of MUC1 mucin during infection with nontypeable Haemophilus influenzae. Am J Respir Cell Mol Biol. 2012;46(2):149–156. doi: 10.1165/rcmb.2011- 0142OC.
  16. Zhang L, Vlad A, Milcarek C, Finn OJ. Human mucin MUC1 RNA undergoes different types of alternative splicing resulting in multiple isoforms. Cancer Immunol Immunother. 2013;62(3):423–435. doi: 10.1007/s00262-012-1325-2.
  17. Imbert-Fernandez Y, Radde BN, Teng Y, et al. MUC1/A and MUC1/B splice variants differentially regulate inflammatory cytokine expression. Exp Eye Res. 2011;93(5):649–657. doi: 10.1016/j.exer.2011.08.004.
  18. Ilkovitch D, Carrio R, Lopez DM. Mechanisms of antitumor and immuneenhancing activities of MUC1/sec, a secreted form of mucin-1. Immunol Res. 2013;57(1–3):70–80. doi: 10.1007/s12026-013-8451-6.
  19. Kirwan A, Utratna M, O’Dwyer ME, et al. Glycosylation-based serum biomarkers for cancer diagnostics and prognostics. Biomed Res Int. 2015;2015:490531. doi: 10.1155/2015/490531.
  20. Wang T, Zheng XJ, Ji YL, et al. Tumour markers in rheumatoid arthritis-associated interstitial lung disease. Clin Exp Rheumatol. 2016;34(4):587–591.
  21. Treon SP, Maimonis P, Bua D, et al. Elevated soluble MUC1 levels and decreased anti-MUC1 antibody levels in patients with multiple myeloma. Blood. 2000;96(9):3147–3153.
  22. Sahraei M, Roy LD, Curry JM, et al. MUC1 regulates PDGFA expression during pancreatic cancer progression. Oncogene. 2012;31(47):4935–4945. doi: 10.1038/onc.2011.651.
  23. Kufe DW. MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene. 2013;32(9):1073–1081. doi: 10.1038/onc.2012.158.
  24. Новиков В.В., Бабаев А.А., Кравченко Г.А. и др. Растворимые ассоциаты молекул адгезии CD54 и CD18 в сыворотке крови человека // Иммунология. — 2008. — Т.29. —№4. — С. 220—223. [Novikov VV, Babayev AA, Kravchenko GA, et al. Soluble associates of adhesion molecules CD54 and CD18 in the human serum. Immunologija (Moskva). 2008;29(4):220–223. (In Russ).]
  25. Новиков В.В., Шумилова С.В., Новиков Д.В. и др. Генетическая нестабильность в локусе RS5498 E469K (A/G) гена ICAM-1 у больных раком толстой кишки и молочной железы // Бюллетень экспериментальной биологии и медицины. — 2015. — Т.160. — №12. — С. 783–786. [Novikov VV, Shumilova SV, Novikov DV, et al. Geneticheskaya nestabil’nost’ v lokuse RS5498 E469K (A/G) gena ICAM-1 u bol’nykh rakom tolstoi kishki i molochnoi zhelez. Biull Eksp Biol Med. 2015;160(12):783–786. (In Russ).]
  26. Haddon L, Hugh J. MUC1-mediated motility in breast cancer: a review highlighting the role of the MUC1/ICAM-1/Src signaling triad. Clin Exp Metastasis. 2015;32(4):393–403. doi: 10.1007/s10585- 015-9711-8.
  27. Bitler BG, Menzl I, Huerta CL, et al. Intracellular MUC1 peptides inhibit cancer progression. Clin Cancer Res. 2009;15(1):100–109. doi: 10.1158/1078-0432.CCR-08-1745.
  28. Chen JQ, Russo J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta. 2012;1826(2):370–384. doi: 10.1016/j. bbcan.2012.06.004.
  29. Riganti C, Gazzano E, Polimeni M, et al. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 2012;53(3):421–436. doi: 10.1016/j. freeradbiomed.2012.05.006.
  30. Klinge CM, Radde BN, Imbert-Fernandez Y, et al. Targeting the intracellular MUC1 C-terminal domain inhibits proliferation and estrogen receptor transcriptional activity in lung adenocarcinoma cells. Mol Cancer Ther. 2011;10(11):2062–2071. doi: 10.1158/1535- 7163.MCT-11-0381.
  31. Kitamoto S, Yokoyama S, Higashi M, et al. MUC1 enhances hypoxiadriven angiogenesis through the regulation of multiple proangiogenic factors. Oncogene. 2013;32(39):4614–4621. doi: 10.1038/onc.2012.478.
  32. Cardaci S, Ciriolo MR. TCA cycle defects and cancer: when metabolism tunes redox state. Int J Cell Biol. 2012;2012:161837. doi: 10.1155/2012/161837.

Supplementary files

There are no supplementary files to display.

Copyright (c) 2016 "Paediatrician" Publishers LLC

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies