ROLES OF DIFFERENT MACROPHAGE PHENOTYPES IN THE PATHOGENESIS OF SOME HUMAN DISEASES

Cover Page


Cite item

Full Text

Abstract

Macrophages have recently been shown to play a key role in promoting of recovery after some diseases as well as in aggravation of inflammatory responses, all the functions being resulted from microenvironmental conditions and therefore phenotypes acquired by macrophages in these conditions. In this article some protective functions of macrophages during infectious and oncologic diseases as well as pathogenic roles in a number of inflammatory diseases are reviewed. Much attention is devoted to opportunities of macrophage reprogramming.

About the authors

V. N. Sakharov

Sechenov First Moscow State Medical University, Russian Federation

Author for correspondence.
Email: vladimirsah91@mail.ru
аспирант кафедры патофизиологии лечебного факультета Первого Московского государственного медицинского университета им. И.М. Сеченова
Адрес: 119992, Москва, ул. Трубецкая, д. 8, стр. 2, тел.: +7 (495) 708-34-81 Russian Federation

P. F. Litvitskii

Sechenov First Moscow State Medical University, Russian Federation

Email: litvicki@mma.ru
доктор медицинских наук, профессор, член-корреспондент РАН, заведующий кафедрой патофизиологии лечебного факультета Первого Московского государственного медицинского университета им. И.М. Сеченова
Адрес: 119992, Москва, ул. Трубецкая, д. 8, стр. 2, тел.: +7 (495) 708-34-81

References

  1. Lyamina S.V., Vedenikin T.Yu., Kruglov S.V., Shimshelashvili Sh.L., Budanova O.P., Malyshev I.Yu. Features and migration of phagocytic activity of alveolar macrophages M1 and M2 phenotypes. Fundamental'nye issledovaniya = Fundamental research. 2011; 11: 536–539. Available at: http://www.rae.ru/fs/?section=content&op=show_article&article_id=7981832 (accessed: 15.04.2014).
  2. Martinez F. O., Gordon. S. The M1 and M2 paradigm of macrophage activation: time for reassessment. Prime Rep. 2014; 6: 13. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944738/ (accessed: 05.04.2014).
  3. Edwards J.P., Zhang X., Frauwirth K.A., Mosser D.M. Biochemical and functional characterization of three activated macrophage populations. J. Leukoc. Biol. 2006; 80 (6): 1298–1307. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642590/ (accessed: 15.04.2014).
  4. Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011; 11 (11): 723–737. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422549/ (accessed: 15.04.2014).
  5. Van Dyken S.J., Locksley R.M. Interleukin-4 and Interleukin-13 mediated alternatively activated macrophages: roles in homeo-stasis and disease. Ann. Rev. Immunol. 2013; 31: 317–343. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606684/ (accessed: 15.04.2014).
  6. Waseem T., Duxbury M., Ito H., Ashley S.W., Robinson M.K. Exogenous ghrelin modulates release of pro- and anti-inflammatory cyto-kines in LPS stimulated macrophages through distinct signaling pathways. Surgery. 2008; 143 (3): 334–342. Available at: http://www.ncbi.nlm. nih.gov/pmc/articles/PMC2278045/ (accessed: 02.05.2014).
  7. Odegaard J.I., Chawla A. Alternative Macrophage Activation and Metabolism. Ann. Rev. Pathol. 2011; 6: 275–297. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3381938/ (accessed: 15.04.2014).
  8. Lee K.A., Lynd J.D., O’Reilly S., Kiupel M., McCormick J.J., La- Pres J.J. The biphasic role of the hypoxia-inducible factor prolyl-4-hydroxylase, PHD2, in modulating tumor-forming potential. Mol. Cancer. Res. 2008; 6 (5): 829–842. Available at: http://www.ncbi.nlm.nih. gov/pubmed/18505927 (accessed: 29.04.2014).
  9. Hamm A., Veschini L., Takeda Y., Costa S., Delamarre E., Squadrito M.L., Henze A.T., Wenes M., Serneels J., Pucci F., Roncal C., Anisimov A., Alitalo K., De Palma M., Mazzone M. PHD2 regulates arteriogenic macrophages through TIE2 signalling. EMBO Mol. Med. 2013; 5 (6): 843–857. Available at: http:// www.ncbi.nlm.nih.gov/pmc/articles/PMC3779447/ (accessed: 16.04.2014).
  10. Eryukhin I.E., Gel'fand B.R., Filimonov M.I., Efimenko N.A., Podachin P.V. Peritonit. V kn.: Khirurgicheskie infektsii. Prakt. ruk-vo. Pod red. I.A. Eryukhina, B.R. Gel'fanda, S.A. Shlyapnikova [Peritonitis. In: Surgical Infection. Practical Guidline. Ed. by I.A. Eryukhin, B.R. Gel'fand, S.A. Shlyapnikov]. Moscow, Litterra, 2006. p. 470–787.
  11. Savel'ev V.S., Podachin P.V., Kirienko A.I.. Peritonit. V kn.: Klinicheskaya khirurgiya. Nats. ruk-vo. Pod red. V.S. Vasil'eva, A.I. Kirienko. T. II [Peritonitis. In: Clinical Surgery. National Guidline. Ed. by V.S. Vasil'ev, A.I. Kirienko. Volume 2]. Moscow, GEOTAR-Media, 2013. p. 477.
  12. Sanz A.B., Aroeira L.S., Bellon T., del Peso G., Jimenez– Heffernan J., Santamaria B., Sanchez-Niñ o M.D., Blanco-Colio L.M., Lopez-Cabrera M., Ruiz-Ortega M., Egido J., Selgas R., Ortiz A. TWEAK promotes peritoneal inflammation. PLoS ONE. 2014; 9 (3): 90399. Available at: http://journals.plos.org/ plosone/article?id=10.1371/journal.pone.0090399 (accessed: 09.04.2014).
  13. Bellón T., Martínez V., Lucendo B., del Peso G., Castro M.J., Apoeira L.S., Rodríguez-Sanz A., Ossorio M., Sánchez-Villanueva R., Selgas R., Bajo M.A. Alternative activation of macrophages in human peritoneum: implications for peritoneal fibrosis. Nephrol. Dial. Transplant. 2011; 26 (9): 2995– 3005. Available at: http://m.ndt.oxfordjournals.org/content/26/9/2995. long?view=long&pmid=21324976 (accessed: 27.04.2014).
  14. Matsukawa A., Takeda K., Kudo S., Maeda T., Kagayama M., Akira S. Aberrant inflammation and lethality to septic peritonitis in mice lacking STAT3 in macrophages and neutrophils. J. Immunol. 2003; 171 (11): 6198–6205. Available at: http://www.jimmunol.org/ content/171/11/6198.long (accessed: 26.04.2014).
  15. Reim D., Rossmann-Bloeck T., Jusek G., Prazeres da Costa O., Holzmann B. Improved host defense against septic peritonitis in mice lacking MyD88 and TRIF is linked to a normal interferon response. J. Leukoc. Biol. 2011; 90 (3): 613–620. Available at: http:// www.jleukbio.org/content/90/3/613.full (accessed: 17.04.2014).
  16. Lai K.N., Leung J.C. Peritoneal adipocytes and their role in inflammation during peritoneal dialysis. Med. Infl. 2010; 2010: 495416. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC2864891/ (accessed: 25.04.2014).
  17. Kim K.E., Koh Y.J., Jeon B.H., Jang C., Han J., Kataru R.P., Schwendener R.A., Kim J.M., Koh G.Y. Role of CD11b macrophages in intraperitoneal lipopolysaccharide induced aberrant lymphangiogenesis and lymphatic function in the diaphragm. Am. J. Pathol. 2009; 175 (4): 1733–1745. Available at: http:// www.ncbi.nlm.nih.gov/pmc/articles/PMC2751568/ (accessed: 27.04.2014).
  18. West M.A., Bennet T., Seatter S.C., Clair L., Bellingham J. LPS pretreatment reprograms macrophage LPS-stimulated TNF and IL-I release without protein tyrosine kinase activation. J. Leukoc.Biol. 1997; 61 (1): 88–95. Available at: http://www.jleukbio. org/cgi/pmidlookup?view=long&pmid=9000541 (accessed: 17.04.2014).
  19. Lyamina S.V., Kruglov S.V., Vedenikin T.Yu., Malyshev I.Yu. The new management strategy immune response in diseases of the lungs. The role of surfactant protein D as dual-factor reprogramming of macrophages. Fundamental'nye issledovaniya = Fundamental research. 2011; 1: 90–98. Available at: www.rae.ru/fs/?section=content&op=show_article&article_id=15813 (accessed: 15.04.2014).
  20. Chen C.H., Wang C.Z., Wang Y.H., Liao W.T., Chen Y.J., Kuo C.H., Kuo H.F., Hung C.H. Effects of Low-Level Laser Therapy on M1 related cytokine expression in monocytes VIA histone modification. Med. Infl. 2014; 2014: 625048. Available at: http:// www.ncbi.nlm.nih.gov/pmc/articles/PMC3945284/ (accessed: 15.04.2014).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies