INFLAMMATION AND BRAIN AGING

Cover Page


Cite item

Full Text

Abstract

The review covers current concepts on cell and molecular mechanisms of neuroinflammation and aging with the special focus on the regulation of cytokine-producing activity of astroglial cells and intercellular communication. The review reflects that a key component of the aging phenomenon as a result of ineffective implementation of anti-inflammatory response are processes of the dysregulated cytokine production, in particular, an increase in the secretion of proinflammatory cytokines and an imbalance in the expression of the receptors and receptor associated proteins. Interpretation of the molecular mechanisms of cell conjugating neuroinflammation and aging cells can give rise to new therapeutic strategies that are relevant to the treatment of a wide range of central nervous system diseases and the development of new experimental models of diseases of the central nervous system.

 

About the authors

A. B. Salmina

V.F. Voyno-Yasenetksy Krasnoyarsk State Medical University, Russian Federation

Author for correspondence.
Email: allasalmina@mail.ru
доктор медицинских наук, профессор, заведующая кафедрой биохимии с курсами медицинской, фармацевтической и токсикологической химии, проректор по инновационному развитию и международной деятельности КрасГМУ им. В.Ф. Войно-Ясенецкого
Адрес: 660022, Красноярск, ул. П. Железняка, д. 1, тел.: +7 (391) 228-07-69 Russian Federation

Yu. K. Komleva

V.F. Voyno-Yasenetksy Krasnoyarsk State Medical University, Russian Federation

Email: yuliakomleva@mail.ru
кандидат медицинских наук, ассистент кафедры биохимии с курсами медицинской, фармацевтической и токсикологической химии КрасГМУ им. В.Ф. Войно-Ясенецкого
Адрес: 660022, Красноярск, ул. П. Железняка, д. 1, тел.: +7 (391) 228-07-69 Russian Federation

N. V. Kuvacheva

V.F. Voyno-Yasenetksy Krasnoyarsk State Medical University, Russian Federation

Email: natalya.kuvacheva@gmail.ru
кандидат фармацевтических наук, доцент кафедры биохимии с курсами медицинской, фармацевтической и токсикологической химии КрасГМУ им. В.Ф. Войно-Ясенецкого
Адрес: 660022, Красноярск, ул. П. Железняка, д. 1, тел.: +7 (391) 228-07-69 Russian Federation

O. L. Lopatina

V.F. Voyno-Yasenetksy Krasnoyarsk State Medical University, Russian Federation

Email: ol.lopatina@gmail.com
кандидат биологических наук, доцент кафедры биохимии с курсами медицинской, фармацевтической и токсикологической химии КрасГМУ им. В.Ф. Войно-Ясенецкого
Адрес: 660022, Красноярск, ул. П. Железняка, д. 1, тел.: +7 (391) 228-07-69

E. A. Pozhilenkova

V.F. Voyno-Yasenetksy Krasnoyarsk State Medical University, Russian Federation

Email: elena.a.pozhilenkova@gmail.com
кандидат биологических наук, доцент кафедры биохимии с курсами медицинской, фармацевтической и токсикологической химии КрасГМУ им. В.Ф. Войно-Ясенецкого
Адрес: 660022, Красноярск, ул. П. Железняка, д. 1, тел.: +7 (391) 220-06-28 Russian Federation

Ya. V. Gorina

V.F. Voyno-Yasenetksy Krasnoyarsk State Medical University, Russian Federation

Email: yana_20@bk.ru
кандидат фармацевтических наук, доцент кафедры биохимии с курсами медицинской, фармацевтической и токсикологической химии КрасГМУ им. В.Ф. Войно-Ясенецкого
Адрес: 660022, Красноярск, ул. П. Железняка, д. 1, тел.: +7 (391) 220-06-28 Russian Federation

E. D. Gasymly

V.F. Voyno-Yasenetksy Krasnoyarsk State Medical University, Russian Federation

Email: elya_qasimli@mail.ru
клинический ординатор кафедры нервных болезней, традиционной медицины с курсом последипломного образования КрасГМУ им. В.Ф. Войно-Ясенецкого
Адрес: 660022, Красноярск, ул. П. Железняка, д. 1, тел.: +7 (391) 220-06-28 Russian Federation

Yu. A. Panina

V.F. Voyno-Yasenetksy Krasnoyarsk State Medical University, Russian Federation

Email: elving-girl@list.ru
аспирант кафедры биохимии с курсами медицинской, фармацевтической и токсикологической химии КрасГМУ им. В.Ф. Войно-Ясенецкого
Адрес: 660022, Красноярск, ул. П. Железняка, д. 1, тел.: +7 (391) 220-06-28 Russian Federation

A. V. Morgun

V.F. Voyno-Yasenetksy Krasnoyarsk State Medical University, Russian Federation

Email: 441682@mail.ru
кандидат медицинских наук, ассистент кафедры педиатрии ИПО КрасГМУ им. В.Ф. Войно-Ясенецкого
Адрес: 660022, Красноярск, ул. П. Железняка, д. 1, тел.: +7 (391) 220-06-28 Russian Federation

N. A. Malinovskaya

V.F. Voyno-Yasenetksy Krasnoyarsk State Medical University, Russian Federation

Email: konsuelo81@mail.ru

доктор медицинских наук, доцент кафедры биохимии с курсами медицинской, фармацевтической и токсикологической химии, научный сотрудник НИИ молекулярной медицины и патобиохимии КрасГМУ им. В.Ф. Войно-Ясенецкого
Адрес: 660022, Красноярск, ул. П. Железняка, д. 1, тел.: +7 (391) 228-07-69

Russian Federation

References

  1. Hayward J.H., Lee S.J. A decade of research on TLR2 discovering its pivotal role in glial activation and neuroinflammation in neurodegenerative diseases. Exp. Neurobiol. 2014; 23 (2): 138–147.
  2. Walker A.K., Kavelaars A., Heijnen C.J., Dantzer R. Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev. 2013; 66 (1): 80–101.
  3. Lasselin J., Capuron L. Chronic low-grade inflammation in metabolic disorders: relevance for behavioral symptoms. Neuroimmuno-modulation. 2014; 21 (2–3): 95–101.
  4. Baylis D., Bartlett D.B., Patel H.P., Roberts H.C. Understanding how we age: insights into inflammaging. Longev. Healthspan. 2013; 2 (1): 8.
  5. Streit W.J., Xue Q.S., Braak H., del Tredici K. Presence of severe neuroinflammation does not intensify neurofibrillary degeneration in human brain. Glia. 2014; 62 (1): 96–105.
  6. Volcic M., Karl S., Baumann B., Salles D., Daniel P., Fulda S., Wiesmüller L. NF-κB regulates DNA double strand break repair in conjunction with BRCA1-CtIP complexes. Nucleic Acids Res. 2012; 40 (1): 181–195.
  7. Chiang J.J., Eisenberger N.I., Seeman T.E., Taylor S.E. Negative and competitive social interactions are related to heightened proinflammatory cytokine activity. Proc. Natl Acad Sci USA. 2012; 109 (6): 1878–1882.
  8. Heneka M.T., Kummer M.P., Latz E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 2014; 14 (7): 463–477.
  9. Sofroniew M.V. Multiple roles for astrocytes as effectors of cyto-kines and inflammatory mediators. Neuroscientist. 2014; 20 (2): 160–172.
  10. Rubini P., Pagel G., Mehri S., Marquardt P., Riedel T., Illes P. Functional P2X7 receptors at cultured hippocampal astrocytes but not neurons. Naunyn. Schmiedebergs Arch. Pharmacol. 2014; 387 (10): 943–954.
  11. Barbierato M., Facci L., Argentini C., Marinelli C., Skaper S.D., Giusti P. Astrocyte-microglia cooperation in the expression of a pro inflammatory phenotype. CNS Neurol. Disord. Drug. Targets. 2013; 12 (5): 608–618.
  12. Lee H.G., Won S.M., Gwag B.J., Lee Y.B. Microglial P2X₇ receptor expression is accompanied by neuronal damage in the cerebral cortex of the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Exp. Mol. Med. 2011; 43 (1): 7–14.
  13. Chen G., Park C.K., Xie R.G., Berta T., Nedergaard M., Ji R.R. Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late phase neuropathic pain in mice. Brain. 2014; 138 (8): 2193–2209.
  14. Ma L., Li X.W., Zhang S.J., Yang F., Zhu G.M., Yuan X.B., Jiang W. Interleukin-1 beta guides the migration of cortical neurons. J. Neuroinflam. 2014; 11: 114.
  15. Yoshida T., Shiroshima T., Lee S.J., Yasumura M., Uemura T., Chen X., Iwakura Y., Mishina M. Interleukin-1 receptor accessory protein organizes neuronal synaptogenesis as a cell adhesion molecule. J. Neurosci. 2012; 32 (8): 2588–2600.
  16. Ota Y., Zanetti A.T., Hallock R.M. The role of astrocytes in the regulation of synaptic plasticity and memory formation. Neural. Plast. 2013; 2013: 185463.
  17. Jurk D., Wilson C., Passos J.F., Oakley F., Correia-Melo C., Greaves L., Saretzki G., Fox C., Lawless C., Anderson R., Hewitt G., Pender S.L., Fullard N., Nelson G., Mann J., van de Sluis B., Mann D.A., von Zglinicki T. Chronic inflammation induces telo-mere dysfunction and accelerates ageing in mice. Nat. Commun. 2014; 2: 4172.
  18. Wikgren M., Karlsson T., Lind J., Nilbrink T., Hultdin J., Sleegers K., Van Broeckhoven C., Roos G., Nilsson L.G., Nyberg L., Adolfs-son R., Norrback K.F. Longer leukocyte telomere length is associated with smaller hippocampal volume among non-demented APOE ε3/ε3 subjects. PLoS One. 2012; 7 (4): 34292.
  19. Ma S.L., Lau E.S., Suen E.W., Lam L.C., Leung P.C., Woo J., Tang N.L. Telomere length and cognitive function in southern Chinese community dwelling male elders. Age Ageing. 2013; 42 (4): 450–455.
  20. Ojeda D., López-Costa J.J., Sede M., López E.M., Berria M.I., Quarleri J. Increased in vitro glial fibrillary acidic protein expression, telomerase activity, and telomere length after productive human immunodeficiency virus-1 infection in murine astrocytes. J. Neurosci Res. 2014; 92 (2): 267–274.
  21. Szebeni A., Szebeni K., DiPeri T., Chandley M.J., Crawford J.D., Stockmeier C.A., Ordway G.A. Shortened telomere length in white matter oligodendrocytes in major depression: potential role of oxidative stress. Int. J. Neuropsychopharmacol. 2014; 17 (10): 1569–1578.
  22. Zhang G., Li J., Purkayastha S., Tang Y., Zhang H., Yin Y., Li B., Liu G., Cai D. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature. 2013; 497 (7448): 211–216.
  23. Polo S.E., Jackson S.P. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes. Dev. 2011; 25 (5): 409–433.
  24. Brochier C., Dennis G., Rivieccio M.A., McLaughlin K., Cop-pola G., Ratan R.R., Langley B. Specific acetylation of p53 by HDAC inhibition prevents DNA damage induced apoptosis in neurons. J. Neurosci. 2013; 33 (20): 8621–8632.
  25. Liu L., Yang M., Kang R., Dai Y., Yu Y., Gao F., Wang H., Sun X., Li X., Li J., Wang H., Cao L., Tang D. HMGB1-DNA complex induced autophagy limits AIM2 inflammasome activation through RAGE. Biochem. Biophys. Res. Commun. 2014; 18; 450 (1): 851–856.
  26. Pérez-Carrión M.D., Ceña V. Pharm Res. Knocking down HMGB1 using dendrimer-delivered siRNA unveils its key role in NMDA induced autophagy in rat cortical neurons. Pharm. Res. 2013; 30 (10): 2584–2595.
  27. Zou J.Y., Crews F.T. Release of neuronal HMGB1 by Ethanol through decreased HDAC activity activates brain neuroimmune signaling. PLoS One. 2014; 9 (2): 87915.
  28. Schroeder F.A., Chonde D.B., Riley M.M., Moseley C.K., Granda M.L., Wilson C.M., Wagner F.F., Zhang Y.L., Gale J., Holson E.B., Haggarty S.J., Hooker J.M. FDG-PET imaging reveals local brain glucose utilization is altered by class I histone deacetylase inhibitors. Neurosci Lett. 2013; 550: 119–124.
  29. Davalos A.R., Kawahara M., Malhotra G.K., Schaum N., Huang J., Ved U., Beausejour C.M., Coppe J.P., Rodier F., Campisi J. P53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J. Cell. Biol. 2013; 201 (4): 613–629.
  30. Pagler T.A., Wang M., Mondal M., Murphy A.J., Westerterp M., Moore K.J., Maxfield F.R., Tall A.R. Deletion of ABCA1 and ABCG1 impairs macrophage migration because of increased Rac1 signaling. Circ. Res. 2011; 108 (2): 194–200.
  31. Canepa E., Borghi R., Viña J., Traverso N., Gambini J., Domenicotti C., Marinari U.M., Poli G., Pronzato M.A., Ricciarelli R. Cholesterol and amyloid–β: evidence for a cross-talk between astrocytes and neuronal cells. J. Alzheimers Dis. 2011; 25 (4): 645–653.
  32. Salmina A.B., Morgun A.V., Kuvacheva N.V., Lopatina O.L., Komleva Y.K., Malinovskaya N.A., Pozhilenkova E.A. Establishment of neurogenic microenvironment in the neurovascular unit: the connexin 43 story. Rev. Neurosci. 2014; 25 (1): 97–111.
  33. Li W., Li J., Sama A.E., Wang H. Carbenoxolone blocks endotox-in-induced protein kinase R (PKR) activation and high mobility group box 1 (HMGB1) release. Mol. Med. 2013; 19: 203–211.
  34. Kang S.M., More S.V., Park J.Y., Kim B.W., In P.J., Yoon S.H., Choi D.K. A novel synthetic HTB derivative, BECT inhibits lipopolysaccharide mediated inflammatory response by suppressing the p38 MAPK/JNK and NF-κB activation pathways. Pharmacol. Rep. 2014; 66 (3): 471–479.
  35. Couturier J., Paccalin M., Morel M., Terro F., Milin S., Pontcharraud R., Fauconneau B., Page G. Prevention of the β-amyloid peptide induced inflammatory process by inhibition of double stranded RNA dependent protein kinase in primary murine mixed co cultures. J. Neuroinflammation. 2011; 8: 72.
  36. Yauzina N.A. Trevozhno-depressivnye rasstroistva i insulinorezistentnost': kliniko-patogeneticheskie paralleli. Avtoref. dis. ... kand. med. nauk [Anxiety and depressive disorders and insulin resistance: clinical and pathogenetic parallels. Autor’s abstract]. Krasnoyarsk, 2013. 26 p.
  37. Nakamura T., Ito T., Igarashi H., Uchida M., Hijioka M., Oono T., Fujimori N., Niina Y., Suzuki K., Jensen R.T., Takayanagi R. Cytosolic double stranded DNA as a damage associated molecular pattern induces the inflammatory response in rat pancreatic stellate cells: a plausible mechanism for tissue injury associated pancreatitis. Int. J. Inflam. 2012; 2012: 504128.
  38. Rauvala H., Rouhiainen A. Physiological and pathophysiological outcomes of the interactions of HMGB1 with cell surface receptors. Biochim. Biophys. Acta. 2010; 1799 (1–2): 164–170.
  39. Ibrahim Z.A., Armour C.L., Phipps S., Sukkar M.B. RAGE and TLRs: relatives, friends or neighbours? Mol. Immunol. 2013; 56 (4): 739–744.
  40. Chuah Y.K., Basir R., Talib H., Tie T.H., Nordin N. Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int. J. Inflam. 2013; 2013: 403460.
  41. Kilic Eren M., Tabor V. The role of hypoxia inducible factor-1 alpha in bypassing oncogene induced senescence. PLoS One. 2014; 9 (7): 101064. Mendelsohn A.R., Larrick J.W. Partial reversal of skeletal muscle aging by restoration of normal NAD+ levels. Rejuvenation Res. 2014; 17 (1): 62–69.
  42. Gao H.M., Zhou H., Zhang F., Wilson B.C., Kam W., Hong J.S. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J. Neurosci. 2011; 31 (3): 1081–1092.
  43. Zhou H., Liao J., Aloor J., Nie H., Wilson B.C., Fessler M.B., Gao H.M., Hong J.S. CD11b/CD18 (Mac-1) is a novel surface receptor for extracellular double stranded RNA to mediate cellular inflammatory responses. J. Immunol. 2013; 190 (1): 115–125.
  44. Malinovskaya N.A. Rol' NAD+-zavisimykh mekhanizmov v regulyatsii neiron-glial'nykh vzaimodeistvii pri ishemii golovnogo mozga i neirodegeneratsii. Avtoref. dis… dokt. med. nauk [The role of NAD + -dependent mechanisms in the regulation of neuron-glia interactions in cerebral ischemia and neurodegeneration. Autor’s abstract]. Kemerovo. 2014. 41 p.
  45. Hayakawa K., Pham L.D., Arai K., Lo E.H. Reactive astrocytes promote adhesive interactions between brain endothelium and endothelial progenitor cells via HMGB1 and beta-2 integrin signaling. Stem. Cell. Res. 2014; 12 (2): 531–538.
  46. Sun Q., Wu W., Hu Y.C., Li H., Zhang D., Li S., Li W., Li W.D., Ma B., Zhu J.H., Zhou M.L., Hang C.H. Early release of high mobility group box 1 (HMGB1) from neurons in experimental subarachnoid hemorrhage in vivo and in vitro. J. Neuroinflam. 2014; 11 (1): 106.
  47. Shin J.H., Lee H.K., Lee H.B., Jin Y., Lee J.K. Ethyl pyruvate inhibits HMGB1 phosphorylation and secretion in activated microglia and in the postischemic brain. Neurosci. Lett. 2014; 558: 159–163.
  48. Salmina A.B., Inzhutova A.I., Morgun A.V., Okuneva O.S., Malinovskaya N.A., Lopatina O.L., Petrova M.M., Taranushenko T.E., Fursov A.A., Kuvacheva N.V. NAD + Converts enzymes in cells of neuronal and glial nature: CD38 as a new target molecule for neuroprotection. Vestnik RAMN = Annals of RAMS. 2012; 10: 29–37.
  49. Feliciano A., Sánchez-Sendra B., Kondoh H., Lleonart M.E. MicroRNAs Regulate Key Effector Pathways of Senescence. J. Aging. Res. 2011; 2011: 205378.
  50. de Rivero Vaccari J. P., Dietrich W. D., Keane R. W. Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J. Cereb. Blood Flow & Metabolism. 2014; 34: 369–375.
  51. Yang Y., Kim S.C., Yu T., Yi Y.S., Rhee M.H., Sung G.H., Yoo B.C., Cho J.Y. Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm. 2014; 2014; 352371.
  52. Xing B., Bachstetter A.D., Van Eldik L.J. Inhibition of Neuronal p38α, but not p38β MAPK, Provides Neuroprotection Against Three Different Neurotoxic Insults. J. Mol. Neurosci. 2014; 11: 172.
  53. Kfoury A., Le Corf K., El Sabeh R., Journeaux A., Badran B., Hussein N., Lebecque S., Manié S., Renno T., Coste I. MyD88 in DNA repair and cancer cell resistance to genotoxic drugs. J. Natl. Cancer. Inst. 2013; 105 (13): 937–946.
  54. Salminen A., Ojala J., Kaarniranta K., Haapasalo A., Hiltunen M., Soininen H. Astrocytes in the aging brain express characteristics of senescence associated secretory phenotype. Eur. J. Neurosci. 2011; 34 (1): 3–11.
  55. Salmina A.B. Neuron-glia interactions as therapeutic targets in neurodegeneration. J. Alzheimers. Dis. 2009; 16 (3): 485–502.
  56. Salmina A.B., Petrova M.M.,Taranushenko T E., Prokopenko S.V., Malinovskaya N.A., Okuneva O.S., Inzhutova A.I., Morgun A.V., Fursov A.A. Alteration of Neuron-Glia Interactions in Neurode-generation. In: Neurodegenerative Diseases Processes, Prevention, Protection and Monitoring. 2011. P. 273–300.
  57. Patel A.B., Lai J.C., Chowdhury G.M., Hyder F., Rothman D.L., Shulman R.G., Behar K.L. Direct evidence for activity dependent glucose phosphorylation in neurons with implications for the astrocyte to neuron lactate shuttle. Proc. Natl. Acad. Sci USA. 2014; 111(14): 5385–5390.
  58. Zamanian J.L., Xu L., Foo L.C., Nouri N., Zhou L., Giffard R.G., Barres B.A. Genomic Analysis of Reactive Astrogliosis. J. of Neuroscience. 2012; 32 (18): 6391–6410.
  59. Esser N., Legrand-Poels S., Piette J., Scheen A.J., Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabet. Res. Clin. Pract. 2014; 105 (2): 141–150.
  60. Santiago J.A., Potashkin J.A. System based approaches to decode the molecular links in Parkinson’s disease and diabetes. Neurobiol. Dis. 2014; 72: 84–91.
  61. Choi J.S., Ryter S.W. Inflammasomes: molecular regulation and implications for metabolic and cognitive diseases. Mol. Cells. 2014; 37 (6): 441–448.
  62. Han C., Lu Y., Wei Y., Wu B., Liu Y., He R. D-ribosylation induces cognitive impairment through RAGE dependent astrocytic inflammation. Cell. Death. Dis. 2014; 13 (5): 1117.
  63. Arrigo T., Chirico V., Salpietro V., Munafò C., Ferraù V., Gitto E., Lacquaniti A., Salpietro C. High mobility group protein B1: a new biomarker of metabolic syndrome in obese children. Eur. J. Endocrinol. 2013; 168 (4): 631–638.
  64. Sun Q., Li J., Gao F. New insights into insulin: The anti-inflammatory effect and its clinical relevance. World J. Diabetes. 2014; 5 (2): 89–96.
  65. Bhat R., Crowe E.P., Bitto A., Moh M., Katsetos C.D., Garcia F.U., Johnson F.B., Trojanowski J.Q., Sell C., Torres C. Astrocyte senescence as a component of Alzheimer’s disease. PLoS One. 2012; 7 (9): 45069.
  66. Kremsky I., Morgan T. E., Hou X., Li L., Finch C. E. Age-changes in gene expression in primary mixed glia cultures from young vs. old rat cerebral cortex are modified by interactions with neurons. Brain. Behav. Immun. 2012; 26 (5): 797–802.
  67. Komleva Yu.K., Salmina A.B., Prokopenko S.V., Shestakova L.A., Petrova M.M., Malinovskaya N.A., Lopatina O.L. Changes in the structural and functional brain plasticity induced rich medium. Vestnik RAMN – Annals of RAMS. 2013; 6: 39–48.
  68. McQuaid R.J., Audet M.C., Jacobson-Pick S., Anisman H. Environmental enrichment influences brain cytokine variations elicited by social defeat in mice. Psychoneuroendocrinology. 2013; 38 (7): 987–996.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies