Disorders of Protein Conformation as a Typical Component of Various Human Disease Pathogenesis

Cover Page


Cite item

Full Text

Abstract

The review is aimed to analyze the data of the recent studies and to describe all the disorders of protein conformation as a typical pathogenic process of protein structure and metabolism involved in various human disease pathogenesis. The existing group of the disorders of protein metabolism doesn’t clearly reflect the involvement of misfolding in the pathogenesis of many human diseases (as a significant factor) and the term disproteinosis is being broadly used only in the context of some «typical» protein misfolding diseases or conformational diseases (for example, amyloidosis and sickle cell anemia). However, protein conformational stability disorders are well-described as physico-chemical processes; there are diseases, in which the manifestations of protein disorders reach their maximum. The revealing of universal form of conformational stability pathology may eliminate the gaps in the understanding of many human diseases, including some diseases with high social significance. 

About the authors

V. N. Sakharov

I.M. Sechenov First Moscow State Medical University, Moscow

Author for correspondence.
Email: vladimirsah91@mail.ru
MD, PhD student Russian Federation

P. F. Litvitskiy

I.M. Sechenov First Moscow State Medical University, Moscow

Email: litvicki@mma.ru
MD, PhD, Professor Russian Federation

References

  1. Clague MJ, Urbé S. Ubiquitin: same molecule, different degradation pathways. Cell. 2010;143(5):682−685. doi: 10.1016/j.cell.2010.11.012.
  2. Kisilevsky R, Lemieux L, Boudreau L, et al. New clothes for amyloid enhancing factor (AEF): silk as AEF. Amyloid. 1999;6(2):98–106. doi: 10.3109/13506129909007309.
  3. Покровский В.И., Киселев О.И., Черкасский Б.Л. Прионы и прионные болезни. – М.: Изд-во РАМН; 2004. 384 с. [Pokrovskii VI, Kiselev OI, Cherkasskii BL. Priony i prionnye bolezni. Moscow: Izd-vo RAMN; 2004. 384 p. (In Russ).]
  4. Внутренние болезни по Тинсли Р. Харрисону / Под ред. Фаучи Э., Браунвальда Ю., Иссельбахера К. и др. Пер. с англ. – М.: Практика, Мак-Гроу-Хилл; 2005. — Т.5. 491 с. [Vnutrennie bolezni po Tinsli R. Kharrisonu. Ed by Fauchi E, Braunval’da Y, Issel’bakhera K, et al. Transl. Moscow: Praktika, Mak-Grou-Khill; 2005. Vol.5. 491 p. (In Russ).]
  5. Chaudhuri TK, Paul S. Protein misfolding diseases and chaperone based therapeutic approaches. FEBS J. 2006;273(7):1331–1349. doi: 10.1111/j.1742-4658.2006.05181.x.
  6. Saverioni D, Notari S, Capellari S, et al. Analyses of protease resistance and aggregation state of abnormal prion protein across the spectrum of human prions. J Biol Chem. 2013;288(39):27972–27985. doi: 10.1074/jbc.M113.477547.
  7. Papanikolopoulou K, Schoehn G, Forge V, et al. Amyloid fibril formation from sequences of a natural beta structured fibrous protein, the adenovirus fiber. J Biol Chem. 2005;280(4):2481–2490. doi: 10.1074/jbc.m406282200.
  8. Kabir ME, Safar JG. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases. Prion. 2014;8(1):111–116. doi: 10.4161/pri.27661.
  9. Weekman EM, Sudduth TL, Abner EL, et al. Transition from an M1 to a mixed neuroinflammatory phenotype increases amyloid deposition in APP/PS1 transgenic mice. J Neuroinflammation. 2014;11:127. doi: 10.1186/1742-2094-11-127.
  10. Wilcock DM. A changing perspective on the role of neuro-inflammation in Alzheimer’s disease. Int J Alzheimers Dis. 2012;2012:495243. doi: 10.1155/2012/495243.
  11. Fregonese L, Stolk J. Hereditary alpha–1–antitrypsin deficiency and its clinical consequences. Orphanet J Rare Dis. 2008;3:16. doi: 10.1186/1750-1172-3-16.
  12. Боковой амиотрофический склероз / Под ред. И.А. Завалишина. – М.: ГЭОТАР-Медиа; 2009. 272 с. [Bokovoi amiotroficheskii skleroz. Ed by Zavalishina I.A. Moscow: GEOTAR-Media; 2009. 272 p. (In Russ).]
  13. Yi CW, Xu WC, Chen J, et al. Recent progress in prion and prion-like protein aggregation. Acta Biochim Biophys Sin (Shanghai). 2013;45(6):520–526. doi: 10.1093/abbs/gmt052.
  14. Rangel LP, Costa DC, Vieira TC, et al. The aggregation of mutant p53 produces prion-like properties in cancer. Prion. 2014;8(1):75–84. doi: 10.4161/pri.27776.
  15. Silva JL, Rangel LP, Costa DC, et al. Expanding the prion concept to cancer biology: dominant negative effect of aggregates of mutant p53 tumour suppressor. Biosci Rep. 2013;33(4):e00054. doi: 10.1042/BSR20130065.
  16. Stoppini M, Bellotti V. Systemic amyloidosis: lessons from β2–microglobulin. J Biol Chem. 2015;290(16):9951–9958. doi: 10.1074/jbc.R115.639799. .
  17. King OD, Gitler AD, Shorter J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 2012;1462:61–80. doi: 10.1016/j.brainres.2012.01.016.
  18. Ugras SE, Shorter J. RNA–Binding Proteins in Amyotrophic Lateral Sclerosis and Neurodegeneration. Neurol Res Int. 2012;2012:432780. doi: 10.1155/2012/432780.
  19. Kurt TD, Bett C, Fernández-Borges N, et al. Prion transmission prevented by modifying the β2-α2 loop structure of host PrPC. J Neurosci.2014;34(3):1022–1027. doi: 10.1523/JNEUROSCI.4636-13.2014.
  20. Azharuddin M, Khandelwal J, Datta H, et al. Dry eye: a protein conformational disease. Invest Ophthalmol Vis Sci. 2015;56(3):1423–1429. doi: 10.1167/iovs.14-15992.
  21. Rasmussen J, Gilroyed BH, Reuter T, et al. Can plants serve as a vector for prions causing chronic wasting disease? Prion. 2014;8(1):136–142. doi: 10.4161/pri.27963.
  22. Rodriguez CM, Bennett JP, Johnson CJ. Lichens: unexpected anti-prion agents? Prion. 2012;6(1):11–16. doi: 10.4161/pri.6.1.17414.
  23. Johnson CJ, Bennett JP, Biro SM, et al. Degradation of the disease associated prion protein by a serine protease from lichens. PLoS One. 2011;6(5):e19836. doi: 10.1371/journal.pone.0019836.
  24. Olanow CW, Brundin P. Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov Disord. 2013;28(1):31–40. doi: 10.1002/mds.25373.
  25. Nussbaum-Krammer CI, Park KW, Li L, et al. Spreading of a prion domain from cell-to-cell by vesicular transport in Caenorhabditis elegans. PLoSGenet. 2013;9(3):e1003351. doi: 10.1371/journal.pgen.1003351.
  26. Magrané J, Smith RC, Walsh K, et al. Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci. 2004;24(7):1700–1706. doi: 10.1523/jneurosci.4330-03.2004.
  27. Sandberg MK, Al-Doujaily H, Sharps B, et al. Prion propagation and toxity in vivo occur in two distinct mechanistic phases. Nature.2011;470(7335):540–542. doi: 10.1038/nature09768.
  28. Da Costa Dias B, Jovanovic K, Weiss SF. Alimentary prion infections: Touchdown in the intestine. Prion. 2011;5(1):6–9. doi: 10.4161/pri.5.1.14283.
  29. Natale G, Ferrucci M, Lazzeri G, et al. Transmission of prions within the gut and toward the central nervous system. Prion. 2011;5(3):142–149. doi: 10.4161/pri.5.3.16328.
  30. Белозеров Е.С., Буланьков Ю.И., Иоанниди Е.А. Медленные инфекции. – Элиста: ЗАО НПП «Джангар»; 2009. С. 37−145. [Belozerov ES, Bulan’kov YI, Ioannidi EA. Medlennye infektsii. Elista: ZAO NPP «Dzhangar»; 2009. p. 37−145. (In Russ).]

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies