Ultraviolet Corneal Crosslinking

Cover Page


Cite item

Full Text

Abstract

This review presents basic information on UV corneal crosslinking. The method is widely used in ophthalmology to treat various types of ectasia, which are characterized by progressive degenerative changes in the cornea, associated with its thinning , hazing and scarring, which leads to a significant reduction in visual acuity. Crosslinking is based on ultraviolet (UV) irradiation of the cornea wavelength 370 nm in the presence of riboflavin, leading to photochemical intracorneal interactions. As a result of crosslinking of collagen treatments, an increase of strength and mechanical properties of the cornea, stops the progression of the disease. The article displays the steps of the method development and the ways of its implementation are described especially occurring biomechanical, biochemical, morphological and ultrastructural changes, as well as the main areas of clinical application of riboflavin-UV-A-induced crosslinking of cornea.

About the authors

M. M. Bikbov

Ufa Eye Research Institute, Ufa

Email: eye@anrb.ru

Доктор медицинских наук, профессор, директор

Адрес: 450008, Уфа, ул. Пушкина, д. 90

Russian Federation

A. R. Khalimov

Ufa Eye Research Institute, Ufa

Author for correspondence.
Email: azrakhal@yandex.ru

Кандидат биологических наук, заведующий научно-производственным отделом 

Адрес: 450008, Уфа, ул. Пушкина, д. 90

Russian Federation

E. L. Usubov

Ufa Eye Research Institute, Ufa

Email: emines.us@inbox.ru

Кандидат медицинских наук, заведующий отделением хирургии роговицы и хрусталика 

Адрес: 450008, Уфа, ул. Пушкина, д. 90

Russian Federation

References

  1. Слонимский А.Ю. Тактика ведения больных при остром кератоконусе // РМЖ. Клиническая офтальмология. — 2004. ― Т. 5. ― №2 ― С. 75—77. [Slonimskii AYu. Tactic of conducting patients with acute keratoconus. RMZh. Klinicheskaya oftal’mologiya. 2004;5(2):75−77. (In Russ).]
  2. Мороз З.И., Тахчиди Х.П., Калинников Ю.Ю., и др. Современные аспекты кератопластики. В кн.: Федоровские чтения: Сборник научных трудов. — М.; 2004. ― С. 280—288. [Moroz ZI, Takhchidi KhP, KalinnikovYuYu, et al. Sovremennye aspekty keratoplastiki. In: Fedorovskie chteniya: Sbornik nauchnykh trudov. Мoscow; 2004. p. 280−288. (In Russ).]
  3. Gordon-Shaag A, Millodot M, Shneor E, Liu Y. The genetic and environmental factors for keratoconus. Biomed Res Int. 2015;2015:795738. doi: 10.1155/2015/795738.
  4. Zadnik K, Barr JT, Edrington TB, et al. Baseline findings in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) study. Invest Ophthalmol Vis Sci. 1998;39(13):2537−2546.
  5. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620−627. doi: 10.1016/S0002-9394(02)02220-1.
  6. Spoerl E, Mrochen M, Sliney D, et al. Safety of UVA-riboflavin cross-linking of the cornea. Cornea. 2007;26(4):385−389. doi: 10.1097/ico.0b013e3180334f78.
  7. Spoerl E, Raiskup-Wolf F, Pillunat LE. Biophysical principles of collagen cross-linking. Klin Monbl Augenheilkd. 2008;225(2):131−137. (In German). doi: 10.1055/s-2008-1027221.
  8. Koller T, Seiler T. Therapeutische quervernetzung der hornhautmittels UVA und riboflavin. Klin Monbl Augenheilkd. 2007;224(9):700−706. (In German). doi: 10.1055/s-2007-963492.
  9. Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66(1):97−103. doi: 10.1006/exer.1997.0410.
  10. Ньюсэм П.Р., Ромеу М.Л., Сегьюти М. и др. Повреждающее действие ультрафиолетового и видимого света на глаза // Вестник оптометрии. ― 2007. ― №3 ― С. 53—60. [Newsome PR, Romeu ML, Seguiti M, et al. The effects of ultraviolet and visible light on the eye. Vestnik optometrii. 2007;(3):53−60. (In Russ).]
  11. Spoerl E, Hoyer A, Pillunat LE, Raiskup F. Corneal cross-linking and safety issues. Open Ophthalmol J. 2011;5:14−16. doi: 10.2174/1874364101105010014.
  12. Wollensak G, Spoerl E, Reber F, Seiler T. Keratocyte cytotoxicity of riboflavin/UVA-treatment in vitro. Eye (Lond). 2004;18(7):718−722. doi: 10.1038/sj.eye.6700751.
  13. McCall AS, Kraft S, Edelhauser HF, et al. Mechanisms of corneal tissue CXL in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Invest Ophthalmol Vis Sci. 2010;51(1):129−138. doi: 10.1167/iovs.09-3738.
  14. Cheung IMY, McGhee CNJ, Sherwin T. Beneficial effect of the antioxidant riboflavin on gene expression of extracellular matrix elements, antioxidants and oxidases in keratoconic stromal cells. Clin Exp Optom. 2014;97(4):349−355. doi: 10.1111/cxo.12138.
  15. Spoerl E, Seiler T. Techniques for stiffening the cornea. J Refract Surg. 1999;15(6):711−713.
  16. Wollensak G, Sporl E, Reber F, et al. Corneal endothelial cytotoxicity of riboflavin/UVA treatment in vitro. Ophthalmic Res. 2003;35(6):324−328. doi: 10.1159/000074071.
  17. Lanchares E, del Buey MA, Cristobal JA, et al. Biomechanical property analysis after corneal collagen cross-linking in relation to ultraviolet A irradiation time. Graefes Arch Clin Exp Ophthalmol. 2011;249(8):1223−1227. doi: 10.1007/s00417-011-1674-0.
  18. Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res. 2004;29(1):35−40. doi: 10.1080/02713680490513182.
  19. Wollensak G, Aurich H, Wirbelauer C, Sel S. Significance of the riboflavin film in corneal collagen crosslinking. J Cataract Refract Surg. 2010;36(1):114−120. doi: 10.1016/j.jcrs.2009.07.044.
  20. Schilde T, Kohlhaas M, Spoerl E, Pillunat LE. Enzymatic evidence of the depth dependence of stiffening on riboflavin/UVA treated corneas. Ophthalmologe. 2008;105(2):165−169. doi: 10.1007/s00347-007-1587-9.
  21. Mencucci R, Marini M, Paladini I, et al. Effects of riboflavin/UVA corneal cross-linking on keratocytes and collagen fibres in human cornea. Clin Experiment Ophthalmol. 2010;38(1):49−56. doi: 10.1111/j.1442-9071.2010.02207.x.
  22. Wollensak G, Wilsch M, Spoerl E, Seiler T. Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA. Cornea. 2004;23(5):503−507. doi: 10.1097/01.ico.0000105827.85025.7f.
  23. Choi S, Lee SC, Lee HJ, et al. Structural response of human corneal and scleral tissues to collagen cross-linking treatment with riboflavin and ultraviolet A light. Lasers Med Sci. 2013;28(5):1289−1296. doi: 10.1007/s10103-012-1237-6.
  24. Zhang Y, Mao X, Schwend T, et al. Resistance of corneal RFUVA-cross-linked collagens and small leucine-rich proteoglycans to degradation by matrix metalloproteinases. Invest Ophthalmol Vis Sci. 2013;54(2):1014−1025. doi: 10.1167/iovs.12-11277.
  25. Jordan C, Patel DV, Abeysekera N, McGhee CN. In vivo confocal microscopy analyses of corneal microstructural changes in a prospective study of collagen cross-linking in keratoconus. Ophthalmology. 2014;121(2):469−474. doi: 10.1016/j.ophtha.2013.09.014.
  26. Mazzotta C, Balestrazzi A, Traversi C, et al. Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: ultrastructural analysis by Heidelberg Retinal Tomograph II in vivo confocal microscopy in humans. Cornea. 2007;26(4):390−397. doi: 10.1097/ico.0b013e318030df5a.
  27. Messmer EM, Meyer P, Herwig MC, et al. Morphological and immunohistochemical changes after corneal cross-linking. Cornea. 2013;32(2):111−117. doi: 10.1097/ICO.0b013e31824d701b.
  28. Matalia H, Shetty R, Dhamodaran K, et al. Potential apoptotic effect of ultraviolet-A irradiation during cross-linking: a study on ex vivo cultivated limbal epithelial cells. Br J Ophthalmol. 2012;96(10):1339−1345. doi: 10.1136/bjophthalmol-2012-301811.
  29. Wollensak G, Spoerl E, Wilsch M, Seiler T. Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment. Cornea. 2004;23(1):43−49. doi: 10.1097/00003226-200401000-00008.
  30. Wollensak G, Herbst H. Significance of the lacunar hydration pattern after corneal cross linking. Cornea. 2010;29(8):899−903. doi: 10.1097/ICO.0b013e3181ca3293.
  31. Бикбова Г.М., Заболотная В.А. Гистоморфология роговицы в отдаленный период после кросслинкинга по поводу кератоконуса. Сборник научных трудов конференции с международным участием по офтальмохирургии «Восток-Запад». — Уфа: ДизайнПолиграфСервис; 2011. ― С. 64—67. [Bikbova GM, Zabolotnaya VA. Histomorphology of the cornea in long-term follow-up after crosslinking for keratoconus. Collection of scientific papers of the Conference on Ophthalmosurgery with Internation Participation «East-West». Ufa: DizainPoligrafServis; 2011. p. 64−67. (In Russ).]
  32. Mazzotta C, Traversi C, Baiocchi S, et al. Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications. Am J Ophthalmol. 2008;146(4):527−533. doi: 10.1016/j.ajo.2008.05.042.
  33. Малюгин Б.Э., Борзенок С.А., Мороз З.И., и др. Экспериментальное изучение ферментативной устойчивости донорской роговицы, обработанной по методике УФ-кросслинкинга // Офтальмохирургия. ― 2014. ― №1 ― С. 20—23. [Malyugin BA, Borzenok СА, Moroz ZI, at al. Experimental study of a donor cornea UV cross-linking enzymatic stability. Ophthalmosurgery. 2014;(1):20−23. (In Russ).]
  34. Spoerl E, Wollensak G, Dittert DD, Seiler T. Thermomechanical behavior of collagen-cross-linked porcine cornea. Ophthalmologica. 2004;218(2):136−140. doi: 10.1159/000076150.
  35. Петров С.Ю., Подгорная Н.Н., Рещикова В.С., и др. Исследование биомеханических свойств различных структур глаза: настоящее и перспективы // Офтальмология. ― 2015. ― Т. 12. ― №1 ― С. 8—14. [Petrov SY, Podgornaya NN, Reshchikova VS, et al. Ocular biomechanics study: current state and perspectives. Ophthalmology. 2015;12(1):8−14. (In Russ).]
  36. Elsheikh A, Wang D, Brown M, et al. Assessment of corneal biomechanical properties and their variation with age. Curr Eye Res. 2007;32(1):11−19. doi: 10.1080/02713680601077145.
  37. Andreassen TT, Simonsen AH, Oxlund H. Biomechanical properties of keratoconus and normal corneas. Exp Eye Res. 1980;31(4):435−441. doi: 10.1016/S0014-4835(80)80027-3.
  38. Oxlund H, Simonsen AH. Biochemical studies of normal and keratoconus corneas. Acta Ophthalmol. 1985;63(6):666−669. doi: 10.1111/j.1755-3768.1985.tb01578.x.
  39. Christiansen DL, Huang EK, Silver FH. Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol. 2000;19(5):409−420. doi: 10.1016/S0945-053X(00)00089-5.
  40. Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-inducedcross-linking. J Cataract Refract Surg. 2003;29(9):1780−1785. doi: 10.1016/S0886-3350(03)00407-3.
  41. Wollensak G, Iomdina E. Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking. Acta Ophthalmol. 2009;87(1):48−51. doi: 10.1111/j.1755-3768.2008.01190.x.
  42. Kling S, Remon L, Perez-Escudero A, et al. Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments. Invest Ophthalmol Vis Sci. 2010;51(8):3961−3968. doi: 10.1167/iovs.09-4536.
  43. Knox Cartwright NE, Tyrer JR, Marshall J. In vitro quantification of the stiffening effect of corneal cross-linking in the human cornea using radial shearing speckle pattern interferometry. J Refract Surg. 2012;28(7):503−508.doi: 10.3928/1081597X-20120613-01.
  44. Kohlhaas M, Spoerl E, Schilde T, et al. Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light. J Cataract Refract Surg. 2006;32(2):279−283. doi: 10.1016/j.jcrs.2005.12.092.
  45. Dias J, Diakonis VF, Lorenzo M, et al. Corneal stromal elasticity and viscoelasticity assessed by atomic force microscopy after different cross linking protocols. Exp Eye Res. 2015;138:1−5. doi: 10.1016/j.exer.2015.06.015.
  46. Braun E, Kanellopoulos J, Pe L, Jankov M. Riboflavin ultraviolet A-induced collagen cross-linking in the management of keratoconus. Invest Ophthalmol Vis Sci. 2005;46(13):4964.
  47. Sedaghat M, Naderi M, Zarei-Ghanavati M. Biomechanical parameters of the cornea after collagen crosslinking measured by waveform analysis. J Cataract Refract Surg. 2010;36(10):1728−1731. doi: 10.1016/j.jcrs.2010.06.056.
  48. Stewart JM, Lee OT, Wong FF, et al. Cross-linking with ultraviolet-A and riboflavin reduces corneal permeability. Invest Ophthalmol Vis Sci. 2011;52(12):9275−9278. doi: 10.1167/iovs.11-8155.
  49. Kasumovic SS, Mavija M, Kasumovic A, et al. Intraocular pressure measurements referring to the corneal thickness in keratoconic eyes after corneal crosslinking with riboflavin and ultraviolet A. Med Arch. 2015;69(5):334−338. doi: 10.5455/medarh.2015.69.334-338.
  50. Wollensak G, Spoerl E, Wilsch M, Seiler T. Endothelial cell damage after riboflavin-ultraviolet-A treatment in the rabbit. J Cataract Refract Surg. 2003;29(9):1786−1790. doi: 10.1016/S0886-3350(03)00343-2.
  51. Spoerl E, Schreiber J, Hellmund K, et al. Studies on the stabilization of the cornea in rabbits. Ophthalmologe. 2000;97(3):203−206. doi: 10.1007/s003470050515.
  52. Bottоs KM, Schor P, Dreyfuss JL, et al. Effect of corneal epithelium on ultraviolet-A and riboflavin absorption. Arq Bras Oftalmol. 2011;74(5):348−351. doi: 10.1590/S0004-27492011000500008.
  53. Malhotra C, Shetty R, Kumar RS, et al. In vivo imaging of riboflavin penetration during collagen cross-linking with hand-held spectral domain optical coherence tomography. J Refract Surg. 2012;28(11):776−780. doi: 10.3928/1081597X-20121011-05.
  54. Малюгин Б.Э., Измайлова С.Б., Шацких А.В., и др. Экспериментальное обоснование эффективности различных методов доставки рибофлавина в строму роговицы как начального этапа выполнения УФ-кросслинкинга // Офтальмохирургия. ― 2014. ― №1 ― С. 24—29. [Malyugin BE, Izmaylova SB, Shatskikh AV, et al. Experimental rationales of the efficacy of different methods of riboflavin delivery into the corneal stroma as the initial step of corneal UV cross-linking. Ophthalmosurgery. 2014;(1):24−29. (In Russ).]
  55. Filippello M, Stagni E, O'Brart D. Transepithelial corneal collagen crosslinking: bilateral study. J Cataract Refract Surg. 2012;38(2):283−291. doi: 10.1016/j.jcrs.2011.08.030.
  56. Bikbova G, Bikbov M. Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin. Acta Ophthalmol. 2014;92(1):30−34. doi: 10.1111/aos.12235.
  57. Lamy R, Chan E, Zhang H, et al. Ultrasound-enhanced penetration of topical riboflavin into the corneal stroma. Invest Ophthalmol Vis Sci. 2013;54(8):5908−5912.doi: 10.1167/iovs.13-12133.
  58. Kissner A, Spoerl E, Jung R, et al. Pharmacological modification of the epithelial permeability by benzalkonium chloridein UVA/Riboflavin CXL. Curr Eye Res. 2010;35(8):715−721. doi: 10.3109/02713683.2010.481068.
  59. Magli A, Forte R, Tortori A, et al. Epithelium-off corneal collagen cross-linking versus transepithelial cross-linking for pediatric keratoconus. Cornea. 2013;32(5):597−601. doi: 10.1097/ICO.0b013e31826cf32d.
  60. Mastropasqua L, Nubile M, Lanzini M, et al. Morphological modification of the cornea after standard and transepithelial corneal cross-linking as imaged by anterior segment optical coherence tomography and laser scanning in vivo confocal microscopy. Cornea. 2013;32(6):855−861. doi: 10.1097/ICO.0b013e3182844c60.
  61. Tao X, Yu H, Zhang Y, et al. Role of corneal epithelium in riboflavin/ultraviolet-A mediated corneal cross-linking treatment in rabbit eyes. Biomed Res Int. 2013;2013:624563. doi: 10.1155/2013/624563.
  62. Koppen C, Wouters K, Mathysen D, et al. Refractive and topographic results of benzalkonium chloride-assisted transepithelial crosslinking. J Cataract Refract Surg. 2012;38(6):1000−1005. doi: 10.1016/j.jcrs.2012.01.024.
  63. Novruzlu S, Turkcu UO, Kvrak I, et al. Can riboflavin penetrate stroma without disrupting integrity of corneal epithelium in rabbits? Iontophoresis and ultraperformance liquid chromatography with electrospray ionization tandem mass spectrometry. Cornea. 2015;34(8):932−936. doi: 10.1097/ICO.0000000000000438.
  64. Shalchi Z, Wang X, Nanavaty MA. Safety and efficacy of epithelium removal and transepithelial corneal collagen crosslinking for keratoconus. Eye (Lond). 2015;29(1):15−29. doi: 10.1038/eye.2014.230.
  65. Bueno JM, Gualda EJ, Giakoumaki A, et al. Multiphoton microscopy of ex vivo corneas after collagen cross-linking. Invest Ophthalmol Vis Sci. 2011;52(8):5325−5331. doi: 10.1167/iovs.11-7184.
  66. Mazzotta C, Caragiuli S. Intraoperative corneal thickness measurement by optical coherence tomography in keratoconic patients undergoing corneal collagen cross-linking. Am J Ophthalmol. 2014;157(6):1156−1162. doi: 10.1016/j.ajo.2014.02.042.
  67. Kaya V, Utine CA, Yılmaz ОF. Intraoperative corneal thickness measurements during corneal collagen cross-linking with hypoosmolar riboflavin solution in thin corneas. Cornea. 2012;31(5):486−490. doi: 10.1097/ico.0b013e31821e4286.
  68. Jacob S, Kumar DA, Agarwal A, et al. Contact lens-assisted collagen cross-linking (CACXL): A new technique for cross-linking thin corneas. J Refract Surg. 2014;30(6):366−372. doi: 10.3928/1081597X-20140523-01.
  69. Schumacher S, Oeftiger L, Mrochen M. Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Invest Ophthalmol Vis Sci. 2011;52(12):9048−9052. doi: 10.1167/iovs.11-7818.
  70. McQuaid R, Li J, Cummings A, et al. Second-harmonic reflection imaging of normal and accelerated corneal crosslinking using porcine corneas and the role of intraocular pressure. Cornea. 2014;33(2):125−130. doi: 10.1097/ICO.0000000000000015.
  71. Famose F. Evaluation of accelerated collagen cross-linking for the treatment of melting keratitis in ten cats. Vet. Ophthalmol. 2015;18(2):95−104. doi: 10.1111/vop.12112.
  72. Touboul D, Gennisson JL, Nguyen TM, et al. Supersonic shear wave elastography for the in vivo evaluation of transepithelial corneal collagen cross-linking. Invest Ophthalmol Vis Sci. 2014;55(3):1976−1984. doi: 10.1167/iovs.13-13445.
  73. Kanellopoulos AJ. Long term results of a prospective randomized bilateral eye comparison trial of higher fluence, shorter duration ultraviolet A radiation, and riboflavin collagen cross linking for progressive keratoconus. Clin Ophthalmol. 2012;6:97−101. doi: 10.2147/OPTH.S27170.
  74. Wernli J, Schumacher S, Spoerl E, Mrochen M. The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time. Invest Ophthalmol Vis Sci. 2013;54(2):1176−1180. doi: 10.1167/iovs.12-11409.
  75. Cingu AK, Sogutlu-Sari E, Cınar Y, et al. Transient corneal endothelial changes following accelerated collagen cross-linking for the treatment of progressive keratoconus. Cutan Ocul Toxicol. 2014;33(2):127−131. doi: 10.3109/15569527.2013.812107.
  76. Aldahlawi NH, Hayes S, O'Brart DP, Meek KM. Standard versus accelerated riboflavin-ultraviolet corneal collagen crosslinking: resistance against enzymatic digestion. J Cataract Refract Surg. 2015;41(9):1989−1996. doi: 10.1016/j.jcrs.2015.10.004.
  77. Leoni-Mesplie S, Mortemousque B, Touboul D, et al. Scalability and severity of keratoconus in children. Am J Ophthalmol. 2012;154(1):56−62. doi: 10.1016/j.ajo.2012.01.025.
  78. McAnena L, O'Keefe M. Corneal collagen crosslinking in children with keratoconus. J AAPOS. 2015;19(3):228−232. doi: 10.1016/j.jaapos.2015.02.010.
  79. Buzzonetti L, Petrocelli G, Valente P, et al. Iontophoretic transepithelial corneal cross-linking to halt keratoconus in pediatric cases: 15-month follow-up. Cornea. 2015;34(5):512−515. doi: 10.1097/ICO.0000000000000410.
  80. Бикбов М.М., Бикбова Г.М., Хабибуллин А.Ф. Применение кросслинкинга роговичного коллагена в лечении буллезной кератопатии // Офтальмохирургия. ― 2011. ― №1 ― С. 24–27. [Bikbov MM, Bikbova GM, Habibullin AF. Corneal collagen crosslinking manegement in bullouse keratopathy treatment. Ophthalmosurgery. 2011;(1):24−27. (In Russ).]
  81. Нероев В.В., Петухова А.Б., Гундорова Р.А., Оганесян О.Г. Влияние кросслинкинга на заживление экспериментальных хирургических ранений роговицы // Практическая медицина. ― 2012. ― №4−1. ― С. 107—110. [Neroev VV, Petukhova AB, Gundorova RA, Oganesyan OG. Cross-linking effect on experimental surgical corneal wounds healing. Prakticheskaya meditsina. 2012;(4−1)):107−110. (In Russ).]
  82. Martins SA, Combs JC, Noguera G, et al. Antimicrobial efficacy of riboflavin/UVA combination (365 nm) in vitro for bacterial and fungal isolates: a potential new treatment for infectious keratitis. Invest Ophthalmol Vis Sci. 2008;49(8):3402−3408. doi: 10.1167/iovs.07-1592.
  83. Бикбов М.М., Бикбова Г.М. Результаты лечения кератоконуса методом имплантации интрастромальных роговичных колец MyoRing в сочетании с кросслинкингом роговичного коллагена // Офтальмохирургия. ― 2012. ― №4. ― С. 6—9. [Bikbov MM, Bikbova GM. Intrastromal corneal MyoRings with corneal collagen cross-linking in keratoconus treatment. Ophthalmosurgery. 2012;(4):6−9. (In Russ).]
  84. Celik HU, Alagoz N, Yildirim Y, et al. Accelerated corneal crosslinking concurrent with laser in situ keratomileusis. J Cataract Refract Surg. 2012;38(8):1424−1431. doi: 10.1016/j.jcrs.2012.03.034.
  85. Wand K, Neuhann R, Ullmann A, et al. Riboflavin-UV-A crosslinking for fixation of biosynthetic corneal collagen implants. Cornea. 2015;34(5):544−549. doi: 10.1097/ICO.0000000000000399.
  86. Ковшун Е.В., Мороз З.И., Власова В.А., Горохова М.В. Возможности использования кросслинкинг-модифицированного донорского материала для кератопластики и кератопротезирования // Катарактальная и рефракционная хирургия. ― 2014. ― Т. 14. ― №1 ― С. 27—31. [Kovshun EV, Moroz ZI, Vlasovа VA, Gorohova MV. The possibility of using cross-linking modified donor material for keratoplasty and keratoprosthesis. Kataraktal'naya i refraktsionnaya khirurgiya. 2014;14(1):27−31. (In Russ).]
  87. Анисимов С.И., Пожарицкий М.Д., Ларионов Е.В. и др. Первый опыт коррекции прогрессирующего гиперметропического сдвига методом роговичного кросслинкинга у пациентов, перенесших в прошлом радиальную кератотомию // Офтальмология. ― 2010. ― Т. 7. ― №4 ― С. 5—8. [Anisimov SI, Pozaritskiy MD, Larionov EV, et al. First experience of progressive hyperopic shift correction by corneal crosslinking in patients after radial keratotomy. Ophthalmology. 2010;7(4):5−8. (In Russ).]
  88. Ahearne M, Coyle A. Application of UVA-riboflavin crosslinking to enhance the mechanical properties of extracellular matrix derived hydrogels. J Mech Behav Biomed Mater. 2016;54:259−267. doi: 10.1016/j.jmbbm.2015.09.035.
  89. Wollensak G, Redl B. Gel electrophoretic analysis of corneal collagen after photodynamic cross-linking treatment. Cornea. 2008;27(3):353−356. doi: 10.1097/ICO.0b013e31815cf66a.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies