Species Diversity of Bifidobacteria in the Intestinal Microbiota Studied Using MALDI-TOF Mass-Spectrometry

Cover Page
  • Authors: Chaplin A.V.1, Brzhozovskii A.G.1, Parfenova T.V.2, Kafarskaia L.I.1, Volodin N.N.3, Shkoporov A.N.1, Ilina E.N.2, Efimov B.A.1
  • Affiliations:
    1. N.I. Pirogov Russian National Research Medical University
    2. Research Institute of Physical-Chemical Medicine
    3. D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology
  • Issue: Vol 70, No 4 (2015)
  • Pages: 435-440
  • Section: MICROBIOLOGY: CURRENT ISSUES
  • URL: https://vestnikramn.spr-journal.ru/jour/article/view/491
  • DOI: https://doi.org/10.15690/vramn.v70.i4.1409
  • Cite item

Abstract


Background: The members of genus Bifidobacterium represent a significant part of intestinal microbiota in adults and predominate in infants. Species repertoire of the intestinal bifidobacteria is known to be subjected to major changes with age; however, many details of this process are still to be elucidated.

Objective: Our aim was to study the diversity of intestinal bifidobacteria and changes of their qualitative and quantitative composition characteristics during the process of growing up using MALDI-TOF mass-spectrometric analysis of pure bacterial cultures.

Methods: A cross-sectional study of bifidobacteria in the intestinal microbiota was performed in 93 healthy people of the ages from 1 month to 57 years. Strains were identified using Microflex LT MALDI-TOF MS, the confirmation was performed by 16S rRNA gene fragment sequencing.

Results: 93% of isolated bifidobacterial strains were successfully identified using MALDI-TOF mass-spectrometry. At least two of the strains from each species were additionally identified by 16S rRNA gene fragment sequencing, in all of the cases the results were the same. It was shown that the total concentration of bifidobacteria decreases with age (p <0.001) as well as the frequency of isolation of Bifidobacterium bifidum (p =0.020) and Bifidobacterium breve (p <0.001), and the frequency of isolation of Bifidobacterium adolescentis, increases (p <0.001), representing the continuous process of transformation of microbiota.

Conclusion: The method of MALDI-TOF mass spectrometry demonstrated the ability to perform rapid and reliable identification of bifidobacteria that allowed the study of changes in the quantitative and qualitative characteristics of human microbiota in the process of growing up.


About the authors

A. V. Chaplin

N.I. Pirogov Russian National Research Medical University

Author for correspondence.
Email: okolomedik@gmail.com

Russian Federation Moscow

A. G. Brzhozovskii

N.I. Pirogov Russian National Research Medical University

Email: barjik@mail.ru

Russian Federation Moscow

T. V. Parfenova

Research Institute of Physical-Chemical Medicine

Email: parfenova1983@gmail.com

Russian Federation Moscow

L. I. Kafarskaia

N.I. Pirogov Russian National Research Medical University

Email: likmed@mail.ru

Russian Federation Moscow

N. N. Volodin

D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology

Email: info@fnkc.ru

Russian Federation Moscow

A. N. Shkoporov

N.I. Pirogov Russian National Research Medical University

Email: a.shkoporov@gmail.com

Russian Federation Moscow

E. N. Ilina

Research Institute of Physical-Chemical Medicine

Email: ilinaen@gmail.com

Russian Federation Moscow

B. A. Efimov

N.I. Pirogov Russian National Research Medical University

Email: efimov_ba@mail.ru

Russian Federation Moscow

References

  1. O’Hara A.M., Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006; 7 (7): 688–693.
  2. Jandhyala S.M., Talukdar R., Subramanyam C., Vuyyuru H., Sasikala M., Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015; 21(29): 8787–8803
  3. Rossi M., Amaretti A., Raimondi S. Folate production by probiotic bacteria. Nutrients. 2011; 3 (1): 118–134.
  4. Vieira A.T., Teixeira M.M., Martins F.S. The role of probiotics and prebiotics in inducing gut immunity. Front Immunol. 2013; 4: 445.
  5. Francino M.P. Early development of the gut microbiota and immune health. Pathog. 2014; 3 (3): 769–790.
  6. Luna R.A., Foster J.A. Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression. Curr. Opin. Biotechnol. 2015; 32: 35–41.
  7. Foster J.A., McVey Neufeld K.A. Gut brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013; 36 (5): 305–312.
  8. Turroni F., Peano C., Pass D.A., Foroni E., Severgnini M., Claesson M.J., Kerr C., Ventura M. Diversity of bifidobacteria within the infant gut microbiota. PLoS One. 2012; 7 (5): 36957.
  9. Jakobsson H.E., Abrahamsson T.R., Jenmalm M.C., Harris K., Quince C., Jernberg C. Björkstén B. Engstrand L., Andersson A.F. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut. 2014; 63 (4): 559–566.
  10. Fan W., Huo G., Li X., Yang L., Duan C., Wang T., Chen J. Diversity of the intestinal microbiota in different patterns of feeding infants by Illumina high-throughput sequencing. World J. Microbiol. Biotechnol. 2013; 29 (12): 2365–2372. doi: 10.1007/s11274-013-1404-3.
  11. Ringel-Kulka T., Cheng J., Ringel Y., Salojarvi J., Carroll I., Palva A., de Vos W.M., Satokari R. Intestinal microbiota in healthy U.S. young children and adults a high throughput microarray analysis. PLoS One. 2013; 8 (5): 64315.
  12. Mayo B., van Sinderen D. Bifidobacteria: Genomics and Molecular Aspects. Norfolk, UK: Caister Academic Press. 2010. 260 р.
  13. Shkoporov A.N., Kafarskaya L.I., Afanas'ev S.S., Smeyanov V.V., Kirillov M.Yu., Postnikova E.A., Maksimov F.E., Khokhlova E.V., Efimov B.A. Molecular genetic analysis of species and the diversity of strains of bifidobacteria in infants. Vestnik RAMN = Annals of the Russian academy of medical sciences. 2006;1:45–50.
  14. Turroni F., Foroni E., Pizzetti P., Giubellini V., Ribbera A., Merusi P., Cagnasso P., Bizzarri B., de’Angelis G.L., Shanahan F., van Sinderen D., Ventura M. Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl. Environ Microbiol. 2009; 75 (6): 1534–1545.
  15. Ignys I., Szachta P., Galecka M., Schmidt M., Pazgrat-Patan M. Methods of analysis of gut microorganism — actual state of knowledge. Ann. Agric. Environ. Med. 2014; 21 (4): 799–803.
  16. Bahaka D., Neut C., Khattabi A., Monget D., Gavini F. Phenotypic and genomic analyses of human strains belonging or related to Bifidobacterium longum, Bifidobacterium infantis, and Bifidobacterium breve. Int. J. Syst. Bacteriol. 1993; 43 (3): 565–573.
  17. Nomura F. Proteome based bacterial identification using matrix assisted laser desorption ionization time of flight mass spectrometry (MALDITOF MS): A revolutionary shift in clinical diagnostic microbiology. Biochem Biophys Acta. 2015; 1854 (6): 528–537.
  18. Willson V.L. Critical Values of the Rank-Biserial Correlation Coefficient. Edu. Psychol. Meas. 1976; 36 (2): 297–300.
  19. Faith J.J., Guruge J.L., Charbonneau M., Subramanian S., Seedorf H., Goodman A.L., Clemente J.C., Knight R., Heath A.C., Leibel R.L., Rosenbaum M., Gordon J.I. The long term stability of the human gut microbiota. Science. 2013; 341 (6141): 1237439.
  20. Shkoporov A.N., Efimov B.A., Khokhlova E.V., Chaplin A.V., Kafarskaya L.I., Durkin A.S., McCorrison J., Torralba M. Draft Genome Sequences of Two Pairs of Human Intestinal Bifidobacterium longum subsp. longum Strains, 44B and 16B and 35B and 22B, Consecutively Isolated from Two Children after a 5 Year Time Period. Genome Announc. 2013; 1 (3): e00234–13.
  21. Duranti S., Turroni F., Lugli G.A., Milani C., Viappiani A., Mangifesta M., Mancabelli L., Sanchez B., Ferrario C., Mancino W., Gueimonde M. Genomic characterization and transcriptional studies of the starch utilizing strain Bifidobacterium adolescentis 22L. Appl. Environ. Microbiol. 2014; 80 (19): 6080–6090.
  22. Turroni F., Duranti S., Bottacini F., Guglielmetti S., Van Sinderen D., Ventura M. Bifidobacterium bifidum as an example of a specialized human gut commensal. Front Microbiol. 2014; 5: 437.
  23. Lee J.H., O’Sullivan D.J. Genomic insights into bifidobacteria. Microbiol. Mol. Biol. Rev. 2010; 74 (3): 378–416.
  24. Pokusaeva K., Fitzgerald G.F., van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 2011; 6 (3): 285–306.
  25. Rios-Covian D., Arboleya S., Hernandez-Barranco A.M., AlvarezBuylla J.R., Ruas-Madiedo P., Gueimonde M., de los ReyesGavilán C.G. Interactions between Bifidobacterium and Bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria. Appl. Environ. Microbiol. 2013; 79 (23): 7518–7524.

Statistics

Views

Abstract - 457

PDF (Russian) - 420

Cited-By


PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies