THE AIRWAYS MICROBIAL COMMUNITY COMPOSITION IN HEALTHY INDIVIDUALS AND BRONCHIAL ASTHMA PATIENTS

Cover Page


Cite item

Full Text

Abstract

This review summarizes the results of studies on the composition of microbial communities in the airways of healthy individuals and patients with asthma. Modern molecular genetic technology of the microbial identification, which are based on a sequence determination of encoding proteins genes conserved regions. These regions form the 16s-subunit ribosomal RNA in microorganisms of different species. These genes are detected by sequencing markers characteristic of individual microorganisms and their phylogenetic groups, and allow to perform a deep analysis of the microbiota in healthy volunteers and patients with chronic bronchoobstructive diseases. So, apparently healthy human bronchial tree is characterized by low bacterial contamination (most typical representatives here are the genera Pseudomonas, Streptococcus, Prevotella, Fusobacteria and Veilonella, much less potentially pathogenic Haemophilus and Neisseria are represented). In bronchial asthma patients the lower respiratory tract microbiota undergoes a qualitative transformation: as compared to healthy individuals the number of Proteobacteria increases and the number of Bacteroidetes decreases. Severe asthma in children is associated with significant respiratory tract Staphylococcus spp. insemination. Association between the asthma developing higher risk in young children and organisms such as Haemophilus, Moraxella and Neisseria spp. It is of considerable interest to determine the role of the microbiome in the development of human diseases of the bronchopulmonary system, and to understand the impact of the microbes communities as a course of disease and the important factor for the development of resistance to therapy.

About the authors

S. V. Fedosenko

Siberian State Medical University, Tomsk, Russian Federation

Author for correspondence.
Email: s-fedosenko@mail.ru

кандидат медицинских наук, докторант кафедры госпитальной терапии с курсом физической реабилитации и спортивной медицины ГБОУ ВПО «СибГМУ» МЗ РФ
Адрес: 634050, Томск, Московский тракт, д. 2, тел.: (3822) 51-49-67

Russian Federation

L. M. Ogorodova

Siberian State Medical University, Tomsk, Russian Federation

Email: lm-ogorodova@mail.ru

доктор медицинских наук, профессор, член-корреспондент РАМН, заведующая кафедрой факультетской педиатрии с курсом детских болезней лечебного факультета ГБОУ ВПО «СибГМУ» МЗ РФ, заместитель министра науки и образования Российской Федерации
Адрес: 634050, Томск, Московский тракт, д. 2, тел.: (3822) 51-49-67

Russian Federation

M. A. Karnaushkina

A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russian Federation

Email: kar3745@yandex.ru

кандидат медицинских наук, ассистент кафедры пульмонологии ФПДО ГБОУ ВПО «МГМСУ им. А.И. Евдокимова» МЗ РФ
Адрес: 127473, Москва, ул. Делегатская, д. 20, стр. 1, тел.: (495) 681-57-69

Russian Federation

E. S. Kulikov

Siberian State Medical University, Tomsk, Russian Federation

Email: evgeny.s.kulikov@gmail.com

кандидат медицинских наук, докторант кафедры госпитальной терапии с курсом физической реабилитации и спортивной медицины ГБОУ ВПО «СибГМУ» МЗ РФ
Адрес: 634050, Томск, Московский тракт, д. 2, тел.: (3822) 51-49-67

Russian Federation

I. A. Deev

Siberian State Medical University, Tomsk, Russian Federation

Email: ivandeyev@yandex.ru

доктор медицинских наук, профессор кафедры факультетской педиатрии с курсом детских болезней лечебного факультета ГБОУ ВПО «СибГМУ» МЗ РФ, Первый заместитель начальника Департамента здравоохранения Томской области
Адрес: 634050, Томск, Московский тракт, д. 2, тел.: (3822) 51-49-67

Russian Federation

N. A. Kirillova

Siberian State Medical University, Tomsk, Russian Federation

Email: kirillova.natalya@gmail.com

кандидат медицинских наук, ассистент кафедры общей врачебной практики и поликлинической терапии ФПК и ППС ГБОУ ВПО «СибГМУ» МЗ РФ
Адрес: 634050, Томск, Московский тракт, д. 2, тел.: (3822) 51-49-67

Russian Federation

References

  1. Hilty M., Burke C., Pedro H., Cardenas P., Bush A., Bossley C., Davies J., Ervine A., Poulter L., Pachter L., Moffatt M.F., Cookson W.O. Disordered microbial communities in asthmatic airways. PLoS One. 2010; 5: 8578.
  2. Abt M.C., Artis D. The intestinal microbiota in health and disease: the influence of microbial products on immune cell homeostasis. Curr. Opin. Gastroenterol. 2009; 25: 496–502.
  3. Staley J.T., Konopka A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann. Rev. Microbiol. 1985; 39: 321–346.
  4. Charlson E.S., Bittinger K., Haas A.R., Fitzgerald A.S., Frank I., Yadav A., Bushman F.D., Collman R.G. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am. J. Respir. Crit. Care Med. 2011; 184 (8): 957–963. doi: 10.1164/rccm.201104-0655OC
  5. Sehti S., Murphy T.F. Infection in the pathogenesis and course of chronic obstructive Pulmonary Disease. N. Engl. J. Med. 2008; 359: 2355–2365.
  6. Huang Y.J., Charlson E.S., Collman R.G., Colombini-Hatch S., Martinez F.D., Senior R.M. The role of the lung microbiome in health and disease. A national heart, lung, and blood institute workshop report. Am. J. Respir. Crit. Care Med. 2013; 187 (12): 1382–1387.
  7. Gern J.E., Lemanske R.F., Jr. Infectious triggers of pediatric asthma. Pediatr. Clin. North Am. 2003; 50 (3): 555–575.
  8. Sehti S., Evans N., Grant B.J.B., Murphy T.F. N. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. Engl. J. Med. 2002; 347: 465–471.
  9. Johnston S.L. Viruses and asthma. Allergy. 1998; 53 (10): 922–932.
  10. Busse W.W. Respiratory infections: their role in airway responsiveness and the pathogenesis of asthma. J. Allergy Clin. Immunol. 1990; 85 (4): 671–683.
  11. Чучалин А.Г., Авдеев С.Н., Архипов В.В., Бабак С.Л. Рациональная фармакотерапия заболеваний органов дыхания: Рук. для практикующих врачей. М.: Литтерра. 2004. 874 с.
  12. Arocha-Sandoval F., Parra-Quevedo K. Oropharyngeal bacteria in asthmatic patients in the city of Maracaibo, Venezuela. Invest. Clin. 2002; 43 (3): 145–155.
  13. Aas J.A., Paster B.J., Stokes L.N., Olsen I., Dewhirst F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 2005; 43: 5721–5732.
  14. Bisgaard H., Hermansen M.N., Buchvald F., Loland L., Halkjaer L.B. Childhood asthma after bacterial colonization of the airway in neonates. N. Engl. J. Med. 2007; 357: 1487–1495.
  15. Sutherland E.R., Martin R.J. Asthma and atypical bacterial infection. Chest. 2007; 132: 1962–1966.
  16. Morens D.M., Taubenberger J.K., Fauci A.S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J. Infect. Dis. 2008; 198: 962–970.
  17. Hussell T., Wissinger E., Goulding J. Bacterial complications during pandemic influenza infection. Future Microbiol. 2009; 4: 269–272.
  18. Wark P., Tooze M., Powell H., Parsons K. Viral and bacterial infection in acute asthma & chronic obstructive pulmonary disease increases the risk of readmission. Respirology. 2013; doi: 10.1111/ resp.12099.
  19. Didierlaurent A., Goulding J., Hussell T. The impact of successive infections on the lung microenvironment. Immunology. 2007; 122: 457–465.
  20. Blasi F., Johnston S.L. The role of antibiotics in asthma. Int. J. Antimicrob. Agents. 2007; 29: 485–493.
  21. Donnelly D., Critchlow A., Everard M.L. Outcomes in children treated for persistent bacterial bronchitis. Thorax. 2007; 62: 80–84.
  22. Specjalski K. Role of Chlamydia pneumoniae and Mycoplasma pneumoniae infections in the course of asthma. Pneumonol. Alergol. Pol. 2010; 78 (4): 284–295.
  23. Han M.K., Huang Y.J., LiPuma J.J. Significance of the microbiome in obstructive lung disease. Thorax. 2012; 67 (5): 456–463.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies