INFLUENCE OF PRODIGIOZAN-DEPENDENT COMUTON ON THE RESISTANCE OF LIVER MITOCHONDRIA AGAINST DAMAGE BY PROTONOFOR

Cover Page

Abstract


An effector of tissue stress of hepatocytes, prodigiozan-dependent comuton (PDC), provokes deenergiezation of liver mitochondria, preloaded by Ca2+ ions. In this case a decrease of membrane potential (MP) and Ca2+ efflux by cyclosporine A sensitive mechanism of megapore is observed. If megapore is blocked by cyclosporin A, protonofor FCCP provoked decrease of MP and Ca2+ efflux by cyclosporin A-insensitive mechanism. It is shown that PDC increases resistance of mitochondria to mentioned protonofor action by inhibition of both these effects. An inhibitory action of PDC is realized by K+ and NADH-dependent mechanism. The effector of hepatocyte tissue stress, prodigiozan-dependent comuton (PDC), evokes deenergizing liver mitochondria preloaded with Ca2+, both membrane potential (MP) decrease and Ca2+ release in according to cyclosporine A- sensitive mechanism of megapore being observed. If megapore is blocked by cyclosporin A, protonophore FCCP reduces of MP and Ca2+ release in according to cyclosporin A-insensitive mechanism. PDC is shown to increase the resistance of mitochondria against protonophore action mentioned above by means of inhibition of both these effects. Inhibitory action of PDC is realized due to both K+ and NADH-dependent mechanism. protective effect takes place only in intact mitochondria of these cells providig (on condition that) its megapore mechanism is not activated. Moreover, the results obttained are evidence of PDC can function as protector due to intensification of energy generation in damaged.


About the authors

G. M. Elbakidze

Association for World Laboratory, Biomedical Centre, Moscow, Russian Federation

Author for correspondence.
Email: gmelbakidze@hotmail.com

Russian Federation

доктор биологических наук, академик РАЕН, директор Медико-биологического центра Ассоциации содействия Всемирной лаборатории
Адрес: 129344, Москва, ул. Искры, д. 13, к. 1, кв. 40, тел.: (499) 198-72-28

A. G. Medentsev

G.K. Skryabin’s Institute of Biochemistry and Physiology of Microorganisms, RAS, Puschino, Moscow district, Russian Federation

Email: Medentsev-AG@rambler.ru

Russian Federation

доктор биологических наук, заведующий лабораторией Института физиологии и биохимии микроорганизмов им. Г.К. Скрябина РАН
Адрес: Московская область, Пущино, Институтская, д. 4, тел.: (4967) 31-86-43

A. G. Elbakidze

Association for World Laboratory, Biomedical Centre, Moscow, Russian Federation

Email: gmelbakidze@hotmail.com

Russian Federation младший научный сотрудник Медико-биологического центра Ассоциации содействия Всемирной лаборатории
Адрес: 129344, Москва, ул. Искры, д. 13, к. 1, кв. 40, тел.: (499) 198-72-28

References

  1. Элбакидзе Г.М., Элбакидзе А.Г., Куликова Л.А. Исследование участия клеток Купфера в инициации процесса продигиозанзависимого накопления комутона в печени крысы. Докл. АН. 2006; 407 (1): 119–123.
  2. Elbakidze G.M., Elbakidze A.G. Tissue stress — the tissuespecific intratissue adaptation mechanism. VIII World Congr. of Int. Soc. for Adapt. Med., Abstract book. Moscow. 2006. P. 135–136.
  3. Элбакидзе Г.М., Федоров В.П., Элбакидзе И.М. Индукция β- и γ-состояний комутонной регуляции дыхания и окислительного фосфорилирования митохондрий из печени и почки крысы ионами кальция. Изв. АН СССР. Сер. биол. 1986; 3: 400–409.
  4. Элбакидзе Г.М., Элбакидзе А.Г., Меденцев А.Г. Исследование влияния продигиозанзависимого комутона на медленный выход ионов кальция из матрикса митохондрий различной тканевой и видовой принадлежности. Докл. АН СССР. 2011; 437 (6): 842–845.
  5. Elbakidze G.M., Elbakidze A.G. Principles of tissue growth intratissue regulation, Collierville. USA: InstantPublisher. 2009. 163 p.
  6. Мосолова И.М., Горская И.А., Шольц К.Ф., Котельникова А.В. В кн.: Методы современной биохимии. Под ред. В.Л. Кретовича. М.: Наука. 1975. С. 45–47.
  7. Хавш Е. Ионо- и молекулярноселективные электроды в биологических системах. М.: Мир. 1988. 221 с.
  8. Kamo N., Muratsugu M., Hongoh R., Kobatake Y. Membrane potential of mitochondria measured with electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J. Membr. Biol. 1979; 49: 105–121.
  9. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951; 193: 265–275.
  10. Chinopoulos C., Starkov A. A., Fiskum G.J. Cyclosporin A-insensitive permeability transition in brain mitochondria: inhibition by 2-aminoethoxydiphenyl borate. Biol. Chem. 2003; 278 (30): 27382–27389.
  11. Montero M., Alonso M.T., Albillos A., Garcia-Sancho J., Alvarez J. Mitochondrial Ca2+-induced Ca2+ release mediated by the Ca2+ uniporter. Mol. Biol. of the Cell. 2001; 12 (1): 63–71.
  12. Halestrap A.P., McStay G.P., Clarke S.J. The permeability transition pore complex: another view. Biochimie. 2002; 84 (2–3): 153–166.
  13. Элбакидзе Г.М., Элбакидзе А.Г. Механизмы гиперметаболических состояний. Вестник РАМН. 2011; 7: 50–54.

Statistics

Views

Abstract - 386

PDF (Russian) - 152

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies