Cover Page

Cite item


The review presents the main and additional features that distinguish tumor cells from normal tissue cells. They include sustained proliferative signaling, evasion from growth suppressors, resisting cell death, enabling replicative immortality, angiogenesis induction, and invasion and metastasis activation. Basis for the formation of these features is provided by tumor genome instability. Tumors are complex tissues that consist of different cell types interacting with each other as well as with normal cells. An important characteristic of tumor cells is the ability to interact with the tumor microenvironment and the formation of tumor stroma.

About the authors

N. E. Kushlinskii

N.N. Blokhin Russian Cancer Research Center, Moscow, Russian Federation

Author for correspondence.

доктор медицинских наук, профессор, член-корреспондент РАМН, заведующий лабораторией клинической биохимии РОНЦ им. Н.Н. Блохина
Адрес: 115446, Москва, Каширское ш., д. 23А, тел.: (499) 324-11-79

Russian Federation

M. V. Nemtsova

Российская медицинская академия последипломного образования, Москва, Российская Федерация

Russian Medical Academy of Postgraduate Education, Russian Federation Russian Federation


  1. Berdasco M., Esteller M. Aberrant epigenetic landscape in cancer: How cellular identity goes awry. Dev. Cell. 2010; 19: 698–711.
  2. Hanahan D., Weinberg R.A. The hallmarks of cancer. The next generation. Cell. 2011; 144 (4): 646–674.
  3. Davies M.A., Samuels Y. Analysis of the genome to personalize therapy for melanoma. Oncogene. 2010; 29: 5545–5555.
  4. Jiang B.H., Liu L.Z. PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv. Cancer Res. 2009; 102: 19–65.
  5. Sudarsanam S., Johnson D.E. Functional consequences of mTOR inhibition. Curr. Opin. Drug Discov. Devel. 2010; 13: 31–40.
  6. Collado M., Serrano M. Senescence in tumours: evidence from mice and humans. Nat. Rev. Cancer. 2010; 10: 51–57.
  7. Burkhart D.L., Sage J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat. Rev. Cancer. 2008; 8: 671–682.
  8. Lipinski M.M., Jacks T. The retinoblastoma gene family in differentiation and development. Oncogene. 1999; 18: 7873– 7882.
  9. Ghebranious N., Donehower L.A. Mouse models in tumor suppression. Oncogene. 1998; 17: 3385–3400.
  10. Curto M., Cole B.K., Lallemand D., Liu C.H., McClatchey A.I. Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J. Cell Biol. 2007; 177: 893–903.
  11. Partanen J.I., Nieminen A.I., Klefstrom J. 3D view to tumor suppression: Lkb1, polarity and the arrest of oncogenic c-Myc. Cell Cycle. 2009; 8: 716–724.
  12. Adams J.M., Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007; 26: 1324–1337.
  13. Junttila M.R., Evan G.I. p53 — a Jack of all trades but master of none. Nat. Rev. Cancer. 2009; 9: 821–829.
  14. Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008; 132: 27–42.
  15. Galluzzi L., Kroemer G. Necroptosis: a specialized pathway of programmed necrosis. Cell. 2008; 135: 1161–1163.
  16. Blasco M.A. Telomeres and human disease: ageing, cancer and beyond. Nat. Rev. Genet. 2005; 6: 611–622.
  17. Kawai T., Hiroi S., Nakanishi K., Meeker A.K. Telomere length and telomerase expression in atypical adenomatous hyperplasia and small bronchioloalveolar carcinoma of the lung. Am. J. Clin. Pathol. 2007; 127: 254–262.
  18. Raynaud C.M., Hernandez J., Llorca F.P. Nuciforo P., Mathieu M.C., Commo F., Delaloge S., Sabatier L., Andre F., Soria J.C. DNA damage repair and telomere length in normal breast, preneoplastic lesions,and invasive cancer. Am. J. Clin. Oncol. 2010; 33: 341–345.
  19. Park J.I., Venteicher A.S., Hong J.Y., Choi et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature. 2009; 460: 66–72.
  20. Maida Y., Yasukawa M., Furuuchi M., Lassmann T., Posse-mato R., Okamoto N., Kasim V., Hayashizaki Y., Hahn W.C., Masutomi K. An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature. 2009; 461: 230–235.
  21. Ferrara N. Vascular endothelial growth factor. Arterioscler. Thromb. Vasc. Biol. 2009; 29: 789–791.
  22. Kessenbrock K., Plaks V., Werb Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 2010; 141: 52–67.
  23. Baeriswyl V., Christofori G. The angiogenic switch in carcinogenesis. Semin. Cancer Biol. 2009; 19: 329–337.
  24. Nagy J.A., Chang S.H., Shih S.C., Dvorak A.M., Dvorak H.F. Heterogeneity of the tumor vasculature. Semin. Thromb. Hemost. 2010; 36: 321–331.
  25. Raica M., Cimpean A.M., Ribatti D. Angiogenesis in pre-malignant conditions. Eur. J. Cancer. 2009; 45: 1924–1934.
  26. Zee Y.K., O’Connor J.P., Parker G.J., Jackson A., Clamp A.R., Taylor M.B., Clarke N.W., Jayson G.C. Imaging angiogenesis of genitourinary tumors. Nat. Rev. Urol. 2010; 7: 69–82.
  27. Ribatti D. Endogenous inhibitors of angiogenesis: a historical review. Leuk. Res. 2009; 33: 638–644.
  28. Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010; 141: 39–51.
  29. Junttila M.R., Evan G.I. p53 — a Jack of all trades but master of none. Nat. Rev. Cancer. 2009; 9: 821–829.
  30. Berx G., van Roy F. Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb. Perspect. Biol. 2009; 1: 003129.
  31. Polyak K., Weinberg R.A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer. 2009; 9: 265–273.
  32. Taube J.H., Herschkowitz J.I., Komurov K., Zhou A.Y., Gupta S., Yang J., Hartwell K., Onder T.T., Gupta P.B., Evans K.W. et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc. Natl. Acad. Sci. USA. 2010; 107: 15449–15454.
  33. Peinado H., Marin F., Cubillo E., Stark H.J., Fusenig N., Nieto M.A., Cano A. Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J. Cell Sci. 2004; 117: 2827–2839.
  34. Karnoub A.E., Dash A.B., Vo A.P., Sullivan A., Brooks M.W., Bell G.W., Richardson A.L., Polyak K., Tubo R., Weinberg R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007; 449: 557–563.
  35. Hugo H., Ackland M.L., Blick T., Lawrence M.G., Clements J.A., Williams E.D., Thompson E.W. Epithelial – mesenchymal and mesenchymal – epithelial transitions in carcinoma progression. J. Cell. Physiol. 2007; 213: 374–383.
  36. Friedl P., Wolf K. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 2010; 188: 11–19.
  37. Madsen C.D., Sahai E. Cancer dissemination — Lessons from leukocytes. Dev. Cell. 2010; 19: 13–26.
  38. Talmadge J.E., Fidler I.J. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010; 70: 5649–5669.
  39. Aguirre-Ghiso J.A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer. 2007; 7: 834–846.
  40. Kenific C.M., Thorburn A., Debnath J. Autophagy and metastasis: another double-edged sword. Curr. Opin. Cell Biol. 2010; 22: 241–245.
  41. Coghlin C., Murray G.I. Current and emerging concepts in tumour metastasis. J. Pathol. 2010; 222: 1–15.
  42. Sleeman J.P. The metastatic niche and stromal progression. Cancer Metastasis Rev. 2012; 31: 429-440.
  43. Yachida S., Jones S., Bozic I., Antal T., Leary R., Fu B., Kamiyama M., Hruban R.H., Eshleman J.R., Nowak M.A. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010; 467: 1114–1117.
  44. Negrini S., Gorgoulis V.G., Halazonetis T.D. Genomic instability — an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 2010; 11: 220–228.
  45. Jackson S.P., Bartek J. The DNA-damage response in human biology and disease. Nature. 2009; 461: 1071–1078.
  46. Kinzler K.W., Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature. 1997; 386: 761–763.
  47. Barnes D.E., Lindahl T. Repair andgenetic consequences of endogenous DNA base damage in mammalian cells. Ann. Rev. Genet. 2004; 38: 445–476.
  48. Korkola J., Gray J.W. Breast cancer genomes — form and function. Curr. Opin. Genet. Dev. 2010; 20: 4–14.
  49. Pages F., Galon J., Dieu-Nosjean M.C., Tartour E., Saute`s-Fridman C., Fridman W.H. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene. 2010; 29: 1093–1102.
  50. Grivennikov S.I., Greten F.R., Karin M. Immunity, inflammation, and cancer. Cell. 2010; 140: 883–899.
  51. Jones R.G., Thompson C.B. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 2009; 23: 537–548.
  52. Semenza G.L. Tumor metabolism: cancer cells give and take lactate. J. Clin. Invest. 2008; 118: 3835–3837.
  53. Teng M.W.L., Swann J.B., Koebel C.M., Schreiber R.D., Smyth M.J. Immune-mediated dormancy: an equilibrium with cancer. J. Leukoc. Biol. 2008; 84: 988–993.
  54. Bindea G., Mlecnik B., Fridman W.H. Natural immunity to cancer in humans. Curr. Opin. Immunol. 2009; 22: 215–222.
  55. Strauss D.C., Thomas J.M. Transmission of donor melanoma by organ transplantation. Lancet Oncol. 2010; 11: 790–796.
  56. Yang L., Pang Y., Moses H.L. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010; 31: 220–227.
  57. Mougiakakos D., Choudhury A., Lladser A., Kiessling R., Johans-son C.C. Regulatory T cells in cancer. Adv. Cancer Res. 2010; 107: 57–117.

Copyright (c) 2015 "Paediatrician" Publishers LLC

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies