Cover Page


Recent data upon molecular mechanisms of pleiotropic action of estrogens in human brain is presented in the article. Given detailed descriptions of properties of classical and membrane bound estradiol receptors, that maintain gene expression regulation, modulation of neurotransmittent systems and signal cascade activation in neuronal cells. Data upon regional distribution of estradiol receptor subtypes in the brain, their participation in main cell population function control (including progenitor cells) is given. Special attention is paid to estrogen participation in neurogenesis, inflammation and apoptosis regulation in central nervous system; in the control of formation and functioning of cerebral vessels.

About the authors

E. N. Kareva

Pirogov Russian National scientific medical university Ministry of Healthcare and Social Development of Russia, Moscow

Author for correspondence.

Russian Federation доктор медицинских наук, профессор кафедры молекулярной фармакологии и радио- биологии имени академика П.В. Сергеева ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздравсоцразвития России Адрес: 117997, Москва, ул. Островитянова, д. 1 Тел.: (916) 579-55-93

О. M. Oleynikova

Pirogov Russian National scientific medical university Ministry of Healthcare and Social Development of Russia, Moscow


Russian Federation кандидат медицинских наук, доцент кафедры неврологии и нейрохирургии с курсом ФУВ лечебного факультета ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздравсоцразвития России Адрес: 117049, Москва, Ленинский проспект, д. 8, кор. 8 Тел.: (499) 764-50-02

V. O. Panov

Pirogov Russian National scientific medical university Ministry of Healthcare and Social Development of Russia, Moscow


Russian Federation кандидат медицинских наук, главный научный сотрудник НИИ цереброваскулярной пато- логии и инсульта ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздравсоцразвития России Адрес: 117415, Москва, ул. Лобачевского, д. 42, кор. 6 Тел.: (495) 432-97-34

N. L. Shimanovskiy

Pirogov Russian National scientific medical university Ministry of Healthcare and Social Development of Russia, Moscow


Russian Federation член-корреспондент РАМН, профессор, заведующий кафедрой молекулярной фармакологии и радиобиологии имени академика П.В. Сергеева ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздравсоцразвития России Адрес: 119121, ул. Б. Пироговская, д. 9а Тел.: (499) 246-60-05

V. I. Skvortsova

Pirogov Russian National scientific medical university Ministry of Healthcare and Social Development of Russia, Moscow


Russian Federation доктор медицинских наук, профессор, заведующая кафедрой фундаментальной и кли- нической неврологии и нейрохирургии ГБОУ ВПО РНИМУ им. Н.И. Пирогова Минздравсоцразвития России Адрес: 117415, Москва, ул. Лобачевского, д. 42, кор. 6 Тел.: (495) 432-97-34


  1. Heldring N., Pike A., Andersson S. et al. Estrogen receptors: how do they signal and what are their targets. Physiol. Rev. 2007; 87 (3): 905−931.
  2. Delaunay F., Pettersson K., Tujague M., Gustafsson J.A. Functional differences between the amino-terminal domains of estrogen receptors alpha and beta. Mol. Pharmacol. 2000; 58 (3): 584−590.
  3. Prokai L., Simpkins J.W. Structure ― non-genomic neuroprotection relationship of estrogens and estrogen-derived compounds. Pharmacol. Ther. 2007; 114 (1): 1–12.
  4. Dahlman-Wright K., Cavailles V., Fuqua S.A. et al. International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol. Rev. 2006; 58 (4): 773−781.
  5. Safe S. Transcriptional activati on of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitam. Horm. 2001; 62: 231−252.
  6. Choudhry M.A., Bland K.I., Chaudry I.H. Trauma and immune response ― effect of gender differences. Injury. 2007; 38 (12): 1382−1391.
  7. Sergeev P.V., Denisov Yu.P., Suleimanov S.Sh. Farmakologiya i toksikologiya = Pharmacology and toxicology. 1981; 4: 429−432.
  8. Rozen V.B. Osnovy endokrinologii [Basics of Endocrinology]. Moscow, MGU. 1994. 384 p.
  9. Sergeev P.V., Shimanovskii N.L., Petrov V.I. Retseptory fiziologicheski aktivnykh veshchestv [Receptors of physiologically active substances]. Moscow, Volgograd, 1999.
  10. Kan A.M., Matyushin A.I. Problemy endokrinologii = Problems of endocrinology. 1991: 53−54.
  11. Luoma J.I., Boulware M.I., Mermelstein P.G. Caveolin proteins and estrogen signaling in the brain. Mol. Cell Endocrinol. 2008; 290 (1−2): 8–13.
  12. Micevych P., Kuo J., Christensen A. Physiology of Membrane Estrogen Receptor Signaling in Reproduction. J. Neuroendocrinol. 2009; 21 (4): 249–256.
  13. Maggiolini M., Picard D. The unfolding stories of GPR30, a new membrane-bound estrogen receptor. Endocrinol. 2010; 204: 105−114.
  14. Pandey D.P., Lappano R., Albanito L. et al. Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. EMBO J. 2009; 28 (5): 523–532.
  15. Shughrue P.J., Scrimo P.J., Merchenthaler I. Evidence for the colocalization of estrogen receptor-beta mRNA and estrogen receptor-alpha immunoreactivity in neurons of the rat forebrain. Endocrinology. 1998; 139: 5267–5270.
  16. Milner T.A., Ayoola K., Drake C.T. et al. Ultrastructural localization of estrogen receptor beta immunoreactivity in the rat hippocampal formation. J. Comp. Neurol. 2005; 491: 81–95.
  17. Perlman W.R., Tomaskovic-Crook E., Montague D.M. et al. Alteration in estrogen receptor alpha mRNA levels in frontal cortex and hippocampus of patients with major mental illness. Biol. Psychiatry. 2005; 58 (10): 812−824.
  18. Hajszan T., Milner T.A., Leranth C. Sex steroids and the dentate gyrus. Progr. Brain. Res. 2007; 163: 399–416.
  19. Micevych P., Sinchak K. Estradiol regulation of progesterone synthesis in the brain. Mol. Cell Endocrinol. 2008; 290 (1–2): 44–50.
  20. Ramachandran S., Kwon K.Y., Shin S.J. et al. Cyclin-dependent kinase inhibitor p27 Kip1 controls growth and cell cycle progression in human uterine leiomyoma. Korean. Med. Sci. 2008; 23 (4): 667–673.
  21. Chambliss K.L., Yuhanna I.S., Mineo C. et al. Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ. Res. 2000; 87 (11): 44–52.
  22. Mermelstein P.G. Membrane-localised oestrogen receptor alpha and beta influence neuronal activity through activation of metabotropic glutamate receptors. Neuroendocrinol. 2009; 21 (4): 257–262.
  23. Morissette M., Le Saux M., D'Astous M. et al. Contribution of estrogen receptors alpha and beta to the effects of estradiol in the brain. J. Steroid. Biochem. Mol. Biol. 2008; 108 (3–5): 327–338.
  24. Cyr M., Thibault C., Morissette M. et al. Estrogen-like activity of tamoxifen and raloxifene on NMDA receptor binding and expression of its subunits in rat brain. Neuropsychopharmacology. 2001; 25 (2): 242−257.
  25. Hudgens E.D., Ji L., Clifford D. et al. The gad2 promoter is a transcriptional target of estrogen receptor α (ERα) and ERβ: A unifying hypothesis to explain diverse effects of estradiol. Neurosci. 2009; 29 (27): 8790–8797.
  26. Xu S., Cheng Y., Keast J.R., Osborne P.B. 17β-Estradiol Activates Estrogen Receptor β-Signalling and Inhibits Transient Receptor Potential Vanilloid Receptor 1 Activation by Capsaicin in Adult Rat Nociceptor Neurons. Endocrinology. 2008; 149 (11): 5540–5548.
  27. Kuhn J., Dina O.A., Goswami C. et al. GPR30 estrogen receptor agonists induce mechanical hyperalgesia in the rat. Eur. J. Neurosci. 2008; 27 (7): 1700−9.
  28. Alyea R.A., Watson C.S. Nongenomic mechanisms of physiological estrogen-mediated dopamine efflux. BMC Neurosci. 2009; 10: 59. Available at:
  29. Xu H., Qin S., Carrasco G.A. et al. Extra-nuclear estrogen receptor GPR30 regulates serotonin function in rat hypothalamus. Neurosci. 2009; 158: 1599–1607.
  30. Holton K.L., Loder M.K., Melikian H.E. Nonclassical, distinct endocytic signals dictate constitutive and PKC-regulated neurotransmitter transporter internalization. Nat. Neurosci. 2005; 8: 881–888.
  31. Watson C.S., Alyea R.A., Hawkins B.E. et al. Estradiol effects on the dopamine transporter ― protein levels, subcellular location, and function. J. Mol. Signal. 2006; 1: 5.
  32. Dennis M.K., Burai R., Ramesh C. et al. In vivo effects of a GPR30 antagonist. Nat. Chem. Biol. 2009; 5: 421–427.
  33. Krejza J., Mariak Z., Nowacka A. et al. Influence of 17-beta-estradiol on cerebrovascular impedance during menstrual cycle in women. J. Neurol. Sci. 2004; 221: 61–67.
  34. Krause D.N., Sue P. Duckles, Dale A. Pelligrino nfluence of sex steroid hormones on cerebrovascular function. J. Appl. Physiol. 2006; 101: 1252−1261.
  35. Shearman A.M., Cooper J.A., Kotwinski P.J. et al. Estrogen receptor alpha gene variation and the risk of stroke. Stroke. 2005; 36 (10): 2281−2.
  36. Johnson M.P., Fernandez F., Colson N.J., Griffiths L.R. A pharmacogenomic evaluation of migraine therapy. Expert. Opin. Pharmacother. 2007; 8 (12): 1821−1835.
  37. Miller V.M., Duckles S.P. Vascular Actions of Estrogens: Functional Implications. Pharmacol. Rev. 2008; 60 (2): 210–241.
  38. Tsang S.Y., Yao X., Essin K. et al. Raloxifene relaxes rat cerebral arteries in vitro and inhibits L-type voltage-sensitive Ca2+ channels. Stroke. 2004; 35: 1709–1714.
  39. Ospina J.A., Duckles S.P., Krause D.N. 17b-Estradiol decreases vascular tone in cerebral arteries by shifting COX-dependent vasoconstriction to vasodilation. Am. J. Physiol. Heart Circ. Physiol. 2003; 285: 241–250.
  40. Sunday L., Ospina J., Krause D.N., Duckles S.P. Estrogen modifies cerebral vascular inflammation. Stroke. 2004; 35: 249.
  41. Gonzales R.J., Ansar S., Duckles S.P., Krause D.N. Androgenic/estrogenic balance in the male rat cerebral circulation: metabolic enzymes and sex steroid receptors. J. Cereb. Blood Flow Metab. 2007; 27 (11): 1841–1852.
  42. Chrissobolis S., Budzyn K., Marley P.D., Sobey C.G. Evidence that estrogen suppresses rho-kinase function in the cerebral circulation in vivo. Stroke. 2004; 35: 2200–2205.
  43. Stirone C., Duckles S.P., Krause D.N., Procaccio V. Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Mol. Pharmacol. 2005; 68: 959–965.
  44. Simpkins J.W., Wang J., Wang X. et al. Mitochondria play a central role in estrogen-induced neuroprotection. Curr Drug Targets CNS. Neurol. Disord. 2005; 4: 69–83.
  45. Liu R., Liu Q., He S. et al. Combination Therapy of 17-beta-Estradiol and Recombinant Tissue Plasminogen Activator for Experimental Ischemic Stroke J. Pharmacol. 2010; 332 (3): 1006– 1012.
  46. Shi J., Simpkins J.W. 17b-Estradiol modulation of glucose transporter 1 expression in blood-brain barrier. Am. J. Physiol. Endocrinol. Metab. 1997; 272: 1016–1022.
  47. Kanda N., Watanabe S. 17b-Estradiol enhances the production of nerve growth factor in THP-1- or peripheral blood monocyte-derived macrophages. J. Invest Dermatol. 2003; 121: 771–780.
  48. Sato T., Teramoto T., Tanaka K. et al. Effects of ovariectomy and calcium deficiency on learning and memory of eight-arm radial maze in middle-aged female rats. Behav. Brain Res. 2003; 142: 207–216.
  49. Gibson C.L., Gray L.J., Murphy S.P., Bath P.M. Estrogens and experimental ischemic stroke: a systematic review. J. Cereb. Blood Flow Metab. 2006; 26 (9фф): 1103−13.
  50. Nunez J., Zhengang Y., Yuhui J. et al. 17b-Estradiol Protects the Neonatal Brain from Hypoxia-Ischemia. Exp. Neurol. 2007; 208 (2): 269–276.
  51. Wang C., Dehghani B., Magrisso I.J. et al. GPR30 contributes to estrogen-induced thymic atrophy. Mol. Endocrinol. 2008; 22: 636–648.
  52. Alonso A., Jick S.S., Olek M.J. et al. Recent use of oral contraceptives and the risk of multiple sclerosis. Arch. Neurol. 2005; 62 (9): 1362.
  53. Smith R.G., Betancourt L., Sun Y. Molecular Endocrinology and Physiology of the Aging Central Nervous System Endocrine Reviews. 2005; 26 (2): 203−250.
  54. Gerstner B., Sifringer M., Dzietko M. et al. Estradiol attenuates hyperoxia-induced cell death in the developing white matter. Ann. Neurol. 2007; 61: 562–573.
  55. Westberry J.M., Prewitt A.K., Wilson M.E. Epigenetic regulation of the estrogen receptor alpha promoter in the cerebral cortex following ischemia in male and female rats. Neuroscience. 2008; 152 (4): 982–989.
  56. Wang L. et al. Murphy Estradiol attenuates neuroprotective benefits of isoflurane preconditioning in ischemic mouse brain. J. Cereb. Blood Flow Metab. 2008; 28 (11): 1824–1834.
  57. Fox E.M., Andrade J., Shupnik M.A. Novel actions of estrogen to promote proliferation. Steroids. 2009; 74 (7): 622−627.
  58. Nicholls D.G., Budd S.L. Mitochondria and neuronal survival. Physiol. Rev. 2000; 80: 315–360.
  59. Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Ann. Rev. Genet. 2005; 39: 359–407.
  60. Chen J.Q., Yager J.D. Estrogen's effects on mitochondrial gene expression: mechanisms and potential contributions to estrogen carcinogenesis. Ann. NY Acad. Sci. 2004; 1028: 258−272.
  61. Irwin R.W., Yao J., Hamilton R.T. et al. Progesterone and Estrogen Regulate Oxidative Metabolism in Brain Mitochondria. Endocrinology. 2008; 149 (6): 3167–3175.
  62. Razmara A. et al. Estrogen Suppresses Brain Mitochondrial Oxidative Stress in Female and Male Rats. Brain Res. 2007; 1176: 71–81.
  63. Zheng J., Ramirez V.D. Purification and identification of an estrogen binding protein from rat brain: oligomycin sensitivity-conferring protein (OSCP), a subunit of mitochondrial F0F1-ATP synthase/ATPase. J. Steroid Biochem Mol. Biol. 1999; 68: 65–75.
  64. St-Pierre J. et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006; 127: 397–408.
  65. Nilsen J. et al. Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function. BMC Neurosci. 2006; 7: 74.
  66. Fowler C.D. Estrogen and adult neurogenesis in the amygdala and hypothalamus. Brain Res. Rev. 2008; 57 (2): 342–351.
  67. Ray R., Novotny N.M., Crisostomo P.R. et al. Sex Steroids and Stem Cell Function. Mol. Med. 2008; 14 (7−8): 493–501.
  68. Jezierski M.K., Sohrabji F. Region- and peptide-specific regulation of the neurotrophins by estrogen. Mol. Brain Res. 2000; 85: 75–84.
  69. Pencea V., Bingaman K.D., Wiegand S.J., Luskin M.B. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci. 2001; 21: 6706–671.
  70. Kokoeva M.V., Yin H., Flier J.S. Neurogenesis in the hypothalamus of adult mice: Potential role in energy balance. Science. 2005; 310: 679–683.
  71. Jover T., Tanaka H., Calderone A. et al. Estrogen protects against global ischemia-induced neuronal death and prevents activation of apoptotic signaling cascades in the hippocampal CA1. J. Neurosci. 2002; 22: 2115–24.
  72. Meltser I., Tahera Y., Simpson E. et al. Estrogen receptor β protects against acoustic trauma in mice. J. Clin. Invest. 2008; 118 (4): 1563–1570.
  73. Mohapel P., Leanza G., Kokaia M., Lindvall O. Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol. Aging. 2005; 26 (6): 939−946.
  74. Jacobs B.L., Praag H., Gage F.H. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol. Psychiatry. 2000; 5: 262–269.
  75. Szymczak S., Kalita K., Jaworski J. et al. Increased estrogen receptor beta expression correlates with decreased spine formation in the rat hippocampus. Hippocampus. 2006; 16 (5): 453−463.
  76. Liu L., Kim J.Y., Koike M.A. et al. FasL shedding is reduced by hypothermia in experimental stroke. J. Neurochem. 2008; 106 (2): 541–550.
  77. Jamous M.A., Nagahiro S., Kitazato K.T. et al. Role of estrogen deficiency in the formation and progression of cerebral aneurysms. Part II: experimental study of the effects of hormone replacement therapy in rats. J. Neurosurg. 2005; 103: 1052–1057.
  78. Ardelt A.A., McCullough L.D., Korach K.S. et al. Estradiol regulates angiopoietin-1 mRNA expression through estrogen receptor-alpha in a rodent experimental stroke model. Stroke. 2005; 36: 337–341.
  79. Lu A., Ran R.Q., Clark J. et al. 17-beta-estradiol induces heat shock proteins in brain arteries and potentiates ischemic heat shock protein induction in glia and neurons. J. Cereb. Blood Flow Metab. 2002; 22: 183–195.
  80. Dietrich J.B. Endothelial cells of the blood-brain barrier: a target for glucocorticoids and estrogens? Front Biosci. 2004; 9: 684–693.
  81. Voumvourakis K.I., Kitsos T.S., Stamboulis E. Gender hormones: role in the pathogenesis of central nervous system disease and demyelination. Curr. Neurovasc Res. 2008; 5 (4): 224–35.
  82. Cvoro A., Tatomer D., Tee M.K. et al. Selective estrogen receptor-beta agonists repress transcription of proinflammatory genes. Immunol. 2008; 180: 630–636.
  83. Vegeto E., Belcredito S., Etteri S. et al. Estrogen receptor-alpha mediates the brain anti-inflammatory activity of estradiol. Proc. Natl. Acad. Sci USA. 2004; 101: 9614–9619.
  84. Ghisletti S., Meda C., Maggi A., Vegeto E. 17 beta-estradiol inhibits inflammatory gene expression by controlling NF-kappa B intracellular localization. Mol. Cell Biol. 2005; 25: 2957–2968.
  85. Garidou L., Laffont S., Douin-Echinard V. et al. Estrogen Receptor alfa Signaling in Inflammatory Leukocytes Is Dispensable for 17beta-Estradiol-Mediated Inhibition of Experimental Autoimmune Encephalomyelitis. The Journal of Immunology. 2004; 173: 2435–2442.
  86. Alt C., Laschinger M., Engelhardt B. Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood-brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 2002; 32: 2133.
  87. Rossouw J.E., Anderson G.L., Prentice R.L. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA. 2002; 288: 321–333.



Abstract - 478

PDF (Russian) - 3377


Article Metrics

Metrics Loading ...



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies