Cover Page

Cite item


Endocrine disruptors are exogenous anthropogenic chemicals (pesticides, herbicides, polychlorinated biphenyls, bisphenol A, polybrominated diphenyl ethers, phthalates and others), that are able to bind hormonal receptors of endocrine and other cells in vivo and act like hormones. These substances disrupt endocrine regulation of metabolism, reproduction and adaptive reactions of organisms and promote human and animal endocrine disorders.


About the authors

N. V. Yaglova

Institute of human morphology of RAMS

Author for correspondence.
Email: yaglova@mail.ru
кандидат медицинских наук, старший научный сотрудник лаборатории иммуномор- фологии воспаления ФГБУ «НИИ морфологии человека» РАМН Адрес: 117418, Москва, ул. Цюрупы, д. 3 Тел./факс: (499) 120-80-65, моб. (910) 404-21-01 Russian Federation

V. V. Yaglov

Institute of human morphology of RAMS

Email: yaglova@mail.ru
доктор медицинских наук, профессор, заведующий лабораторией развития эндо- кринной системы ФГБУ «НИИ морфологии человека» РАМН Адрес: 117418, Москва, ул. Цюрупы, д. 3 Тел./факс: (499) 120-80-65 Russian Federation


  1. Colborn T., von Saal F.S., Soto A.M. Development effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Health Pеrspect. 1993; 101 (5): 378–384.
  2. Diamanti-Kandarakis E., Bourguignon J-P., Giudice L. et al. Endocrine-disrupting chemicals: An endocrine society scientific statement. Endocrine Reviews. 2009; 30 (4): 293–342.
  3. Beard J. DDT and human health. Sci. Total Environ. 2006; 355 (1–3): 78–89.
  4. Molekuliarnaia e`ndokrinologiia. Fundamental`ny`e issledovaniia i ikh otrazhenie v clinike / per. s angl. pod red. B.D. Vai`ntrauba. M.: Meditcina. 2003. 496 s.
  5. Fiziologiia e`ndokrinnoi` sistemy` / per. s angl. pod red. Dzh. Griffina, S. Okhedy`. M.: Binom. Laboratoriia znanii`. 2010. 496 s.
  6. Zetler G. The peptidiergic neuron — a working hepothesis. Biochem. Pharmacol. 1978; 25: 1817–1818.
  7. Pollak Dzh.M., Blum S.R. Peptidergichesqaia innervatciia zheludochno-qishechnogo traqta. V qn.: Zheludochno-kishechny`e gormony` i patologiia pishchevaritel`noi` sistemy` / per. s angl. pod red. M. Grossmana i dr. M.: Meditcina. 1981; 31–53.
  8. Iaglov V.V., Iaglova N.V. Osnovy` tcitologii, e`mbriologii i obshchei` gistologii. M.: Izdatel`stvo «Koloss». 2008. 276.
  9. Hayes W.J. Jr. Toxicology of pesticides. Baltimore: Williams & Wilkins Co. 1975. 580 р.
  10. Thomas J., Ou L.T., All-Agely A. DDE remediation and degradation. Rev. Environ Contam. Toxicol. 2008; 194: 55–69.
  11. Tebourbi O., Driss M.R., Sakle M., Rhouma K.B. Metabolism of DDT in different tissues of young rats. J. Environ. Sci. Health. 2006; 41 (2): 167–176.
  12. Biessmann A., von Faber H. Effects of DDT and its metabolites on the adrenal gland of Japanese quail. Environmtntal Polluttion. Series A. Ecological Biological. 1981; 25: 99–104.
  13. Nelson A.A., Woodard G. Adrenal cortical atrophy and liver damage produced in dogs by feeding 2,2-bis-(parachlorophenil)- 1,1-dichlorethane (DDD). Fed. Proc. 1948; 7: 277.
  14. Gigienicheskie kriterii sostoianiia okruzhaiushchei` sredy`. DDT i ego proizvodny`e. Vsemirnaia organizatciia zdravookhraneniia. ZHeneva. 1982. 216.
  15. Lacroix M., Hontela A. The organochlorine o,р-DDD disrupts the adrenal steroidogenic signaling pathway in rainbow trout (Oncorhynchus mykiss). Toxicol. Appl. Pharmacol. 2003; 190 (3): 197–205.
  16. Burlington H., Linderman V.F. Effect of DDT in testis and secondary sex characteristics of white leghorn cockerels. Proc. Soc. Exp. Biol. 1950; 74: 48–51.
  17. Rhouma K.B., Tebourbi O., Krichah R., Sakly M. Reproductive toxicity of DDT in adult male rats. Human Experimental Toxicology. 2001. P. 393–397.
  18. Ottoboni A. Effect of DDT on the reproductive lifespan in the female rat. Toxicol. Appl. Pharmacol. 1972; 22: 497–502.
  19. Sanderson T., van den Berg M. Interaction of xenobiotics with the steroid hormone biosynthesis pathway. Pure Appl. Chem. 2003; 75: 1957–1971.
  20. Guillette L. Jr. Endocrine disrupting chemicals — beyond the dogma. Environ. Health. Perspect. 2006; 114 (Suppl. 1): 9–12.
  21. Danielson P. The cytochrome P450 superfamily: biochemistry, evolution, and drug metabolism in humans. Curr. Drug Metab. 2002; 3: 561–597.
  22. Jefferies D.J., French M.C. Avian thyroid: effect of p p-DDT on size and activity. Science.1969; 166: 1278–80.
  23. Capen C.C. Mechanisms of chemical injury of thyroid gland. Prog. Clin. Biol. Res.1994; 387:173–191.
  24. Boas M., Feldt-Rasmussen U., Skakkebaek N.E., Main K.M. Environmental chemicals and thyroid function. European Journal of Endocrinology. 2006; 154: 599–611.
  25. Khan M.A., Davis C.A., Foley G.L. et al. Changes in thyroid gland morphology after acute acrylamide exposure. Toxicologic Sciences. 1999; 47: 151–157.
  26. Kakeyama M., Tohyama C. Developmental neurotoxicity of dioxin and its related compounds. Industrial Health. 2003; 41: 215–230.
  27. Nishimura N., Yonemoto J., Tohyama C. Immunohistochemical localization of thyroid stimulating hormone induced by a low oral dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin in female SpragueDowley rats. Toxicology. 2002; 171: 133–142.
  28. Pavuk M., Schecter A., Akhtar F., Michalek J. Serum 2,3,7,8-tetrachlorodibenzo-p-dioxin levels and thyroid function in air force veterans of the Vietnam war. Annals Epidimiology. 2003; 13: 335–343.
  29. Loomis D., Browning S., Schenck A. et al. Cancer mortality among electric utility workers exposed to polychlorinated biphenyls. Occup. Environ. Med. 1997; 54 (10): 720–728.
  30. Sinks T., Steele G., Smith A. et al. Mortality among workers exposed to polychlorinated biphenyls. Am. J. Epidemiol. 1992; 136 (4): 389–98.
  31. Kodavanti P. Neurotoxicity of persistent organic pollutants: possible modes of action and further consideration. Dose Response. 2006; 3 (3): 273–305.
  32. Mullerova D., Kopecky J., Matejkova D. et al. Negative association between plasma levels of adiponectin and polychlorinated biphenyl 153 in obese women under non-energy restrictive regime. Int. J. Obes. (Lond). 2008; 32 (12): 1875–1878.
  33. Dickerson S., Cunningham S., Patisaul H. et al. Endocrine disruption of brain sexual differentiation by developmental PCB exposure. Endocrinology. 2011; 152 (2): 581–594.
  34. Kandaraki E., Chatzigeorgiou A., Livadas S. et al. Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol A in women with PCOS. Endocrinology. 2011; 152: 742–743.
  35. Costa L.G., Giordano G. Developmental neurotoxicity of polychlorinated diphenyl ether (PDBE) flame retardants. Neurotoxicology. 2007; 28 (6): 1047–67.
  36. Viberg H., Johansson N., Fredriksson A. et al. Neonetal exposure to higher brominated diphenyl ethers, hepta-, octa- or nonabromodiphenyl ether impairs spontaneous behavior and learning and memory functions of adult mice. Toxcol. Sci. 2006; 92 (1): 211–218.
  37. Lema S., Dickey J., Schultz I., Swanson P. Dietary Exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47) alters thyroid status and thyroid hormone–regulated gene transcription in the pituitary and brain. Environ. Health Perspect. 2008; 116 (12): 1694–1699.
  38. Szabo D., Richardson V., Ross D. et al. Effects of perinatal PDBE exoposure on hepatic phase I, phase II, phase III, and deiodinase I gene expression involved in thyroid hormone metabolism in rat male pups. Toxicol. Sci. 2009; 107 (1): 27–39.
  39. Talsness C., Shakibaei M., Kuriyama S. et al. Ultrastructural changes observed in rat ovaries following in utero and lactational exposure to low doses of polybrominated flame retardant. Toxicol. Lett. 2005; 157 (3): 189–202.
  40. Fisher J. Environmental anti-androgens and male reproductive health: focus on phthalates and testicular dysgenesis syndrome. Reproduction. 2004; 127 (3): 305–15.
  41. Swan S., Main K., Liu F. et al. Decrease in anogenital distance among male infants with prenatal phtalate exposure. Environ Health Perspect. 2005; 113 (8): 1056–1061.
  42. McEwen G., Renner G. Validity of anogenital distance as a marker of in utero phtalate exposure. Environ Healt Perspect. 2006; 114 (1): 19–20.
  43. Crofton K., Padilla S., Tilson H. et al. The impact of dose rate on the neurotoxicity of acrylamide: the interaction of administrated dose, target-tissue concentrations, tissue damage, and functional effects. Toxicol. Appl. Pharmacol. 1996; 139: 163–176.
  44. Dearfield K., Abernathy C., Ottley M. et al. Acrylamide: its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity. Mutat. Res. 1988; 195: 45–77.
  45. Friedman M., Dulac H., Stedham M. A life-time oncogenicity study in rats with acrylamide. Fund. Appl. Toxicol. 1995; 27: 95–105.
  46. Iaglov V.V. Aqtual`ny`e problemy` biologii diffuznoi` e`ndoqrinnoi` sistemy`. Arkh. anatomii, gistologii i e`mbriologii. 1989; KHSVI (1): 14–29.
  47. Ptashekas Yu.R. Morfologicheskoe issledovanie endokrinnogo apparata zheludka i dvenadtsatiperstnoy kishki intaktnykh krys i pri deystvii 3,6-dikhlorpikolinovoy kisloty. Avtoref. dis. kand. med. nauk. Moskva. 1987. 16 c.
  48. Iaglov V.V., Ptashekas Iu.R. Reaktciia e`ndokrinny`kh cletok zheludochno-kishechnogo trakta v otvet na vozdei`stvie 3,6-dikhlorpikolinovoi` kisloty`. Biull. e`ksp. biol. i med. 1989; 6: 758–761.

Copyright (c) 2012 "Paediatrician" Publishers LLC

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies