NANOSTRUCTURED LIPOSOMAL SYSTEMS AS TRANSPORT AGENTS FOR ANTICANCER DRUGS

Cover Page

Abstract


Liposomes quite recently have turned from a model of biological membranes into an object of extensive research and practical use. The versatile traits of liposomal formulation allow its' universal implementation, especially in cancer chemotherapy. The advantages of liposomal use as a carrier of an anticancer drug for its targeted selective accumulation are discussed in this article. This article contains description of new types of liposomes, differing in contents and use, such as: simple, sterically stabilized, targeted (immunoliposomes),cationic, sensitive to physical and chemical stimuli. The characteristics of liposomal systems of anticancer drug delivery designed at Blokhin Russian Oncological Scientific Centre is given in the article.


About the authors

A. Yu. Baryshnikov

FSBI Blokhin Russian oncological scientific centre RAMS, Moscow

Author for correspondence.
Email: baryshnikov_anat@mail.ru

Russian Federation доктор медицинских наук, профессор, зам. директора РОНЦ им. Н.Н. Блохина РАМН по научной части, директор НИИ ЭДиТО РОНЦ им. Н.Н. Блохина РАМН Адрес: 115448, Москва, Каширское шоссе, д. 24 Тел.: (499) 324-22-74

References

  1. Pal'tsev M.A. Remedium = Remedium. 2008; 9: 6−11.
  2. Alekseev K.V., Alyautdin R.N., Blynskaya E.V., Kvinkh B.T. Vestnik novykh meditsinskikh tekhnologii = Bulletin of new medical technologies. 2009; 16 (2): 17−20.
  3. Haley B., Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urologic Oncology: Seminars and Original Investigations. 2008; 26: 57−64.
  4. Bawarski W.E., Chidlowsky E., Bharali D.J. et al. Emerging nanopharmaceuticals. Nanomedicine: Nanotechnology, Biology and Medicine. 2008; 4: 273−282.
  5. Barsukov L.I. Sorosovskii obrazovatel'nyi zhurnal = Soros Educational Journal. 1998; 10: 2−9.
  6. Barenholz Y. Liposome application: problems and prospects. Curr. Opin. Colloid Interface Sci. 2001; 6: 66−77.
  7. Immordino M.L., Dosio F., Cattel L. Stealth liposomes: review of the basic science, rationale and clinical applications, existing and potential. International Journal of Nanomedicine. 2006; 1 (3): 297−315.
  8. Storm G., Crommelin D.J.A. Liposomes: quo vadis. PSTT. 1998; 1 (1): 19−31.
  9. Shvets V.I., Krasnopol'skii Yu.M. Provizor = Pharmacist. 2008; 3: 18−24.
  10. Branco M.C., Schneider J.P. Self-assembling materials for therapeutic delivery. Acta Biomaterialia. 2009; 5: 817−831.
  11. Goyal P., Goyal K., Kumar S.G.V. et al. Liposomal drug delivery systems ― clinical applications. Acta Pharm. 2005; 55: 1−25.
  12. Hobbs S.K., Monsky W., Yuan F. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Nat. Acad. Sci. USA. 1998; 95: 4607−4612.
  13. Boucher Y., Kirkwook J., Opacik D. et al. Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res. 1991; 51: 6691−6694.
  14. Campbell R. Tumor physiology and delivery of nanopharmaceuticals. Anticancer Agents Med. Chem. 2006; 6: 503−512.
  15. Tong R., Boucher Y., Kozin S. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004; 64: 3731−3736.
  16. Nässander U.K., Storm G., Peeters P.A.M., Crommelin D.J.A. Liposomes. In: M. Chasin, R. Langer eds. Biodegradable polymers as drug delivery systems. New York: Marcel Dekker. 1990. P. 261−338.
  17. Vasir J.K., Reddy M.K., Labhasetwar V.D. Nanosystems in drug targeting: opportunities and challenges. Current Nanoscience. 2005; 1 (1): 47−64.
  18. Basu M.K. Liposomal delivery of antileishmanial agents. Journal of Applied Research. 2005; 5 (1): 221−236.
  19. Frezard F. Liposomes: from biophysics to the design of peptide vaccines. Braz. J. Med. Biol. Res. 1999; 32 (2): 181−189.
  20. Zurbriggen R., Amacker M., Krammer A.R. Immunopotentiating reconstituted influenza virosomes. In: G. Gregoriadis eds. Liposome technology. 3rd edn. Vol. I. Liposome preparation and related techniques. New York: Informa Healthcare USA, Inc. 2007. P. 85−96.
  21. Felnerova D., Viret J.-F., Glück R., Moser C. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Current Opinion in Biotechnology. 2004; 15: 518−529.
  22. Jain S., Mishra V., Singh P. et al. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int. J. Pharm. 2003; 261 (1−2): 43−55.
  23. Qin J., Chen D., Hu H. et al. Surface modification of RGD-liposomes for selective drug delivery to monocytes/Neutrophils in brain. Chem. Pharm. Bull. 2007; 55 (8): 1192−1197.
  24. Moghimi S., Hunter A., Murray J. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 2001; 53: 283−318.
  25. Fang J., Sawa T., Maeda H. Factors and mechanism of «epr» effect and the enhanced antitumor effects of macromolecular drugs including smancs. Adv. Exp. Med. Biol. 2003; 519: 29−49.
  26. Greish K., Fang J., Inutsuka T. et al. Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin. Pharmacokinet. 2003; 42: 1089−1105.
  27. Maeda H. The enhanced permeability and retention (epr) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001; 41: 189−207.
  28. Dvorak H.F., Nagy J.A., Dvorak J.T., Dvorak A.M. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am. J. Phathol. 1988; 133: 95−109.
  29. Jain R.K., Gerlowski L.E. Extravascular transport in normal and tumor tissue. Crit. Rev. Oncol. Hematol. 1986; 5: 115−170.
  30. Storm G., Belliot S.O., Daemen T., Lasic D.D. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv. Drug Deliv. Rev. 1995; 17: 31−48.
  31. Ulrich A.S. Biophysical aspects of using liposomes as delivery vehicles. Bioscience Reports. 2002; 22 (2): 129−150.
  32. Davydov M.I. Eksperimental'naya onkologiya na rubezhe vekov / pod red. M.I. Davydova, A.Yu. Baryshnikova [Experimental Oncology at the Turn of the Century. Edited by M.I. Davydov, A.Yu. Baryshnikov]. Moscow, Izd. gruppa RONTs im. N.N. Blokhina RAMN, 2003. 552 p.
  33. Lantsova A.V. Sozdanie i biofarmatsevticheskoe izuchenie liposomal'nykh lekarstvennykh form protivoopukholevykh preparatov proizvodnykh nitrozomocheviny. Avtoref. dis. kand. farm. nauk [Creating and Biopharmaceutical Study of Liposomal Formulations of Anticancer Drugs of Nitrosoureas. Author’s abstract]. Moscow, 2006. 173 p.
  34. Lantsova A.V., Oborotova N.A., Peretolchina N.M. et al. Rossiiskii bioterapevticheskii zhurnal = Russian biotherapeutic journal. 2004; 4: 19−23.
  35. Lantsova A.V., Oborotova N.A., Peretolchina N.M. et al. Sibirskii onkologicheskii zhurnal = Siberian journal of oncology. 2005; 2 (14): 25−29.
  36. Allen T.M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer. 2002; 2 (10): 750−763.
  37. Tolcheva E.V. Sozdanie konstruktsii immunoliposomy i izuchenie immunoliposomal'noi formy protivoopukholevogo preparata doksorubitsin. Avtoref. dis. kand. biol. nauk [Creating the Design and Study of Immunoliposomes Immunoliposomalnoy Anticancer Drug Doxorubicin Forms. Author’s abstract]. Moscow, 2007, 109 p.
  38. Gao H. et al. Mechanics of receptor-mediated endocytosis. Proc. Nat. Acad. Sci. USA. 2005. 102 p.
  39. Torchilin V.P. Antibody-modified liposomes for cancer chemotherapy. Expert Opin. Drug Deliv. 2008; 5: 1003−1025.
  40. Baryshnikov A.Y., Kosorukov V.S., Sokolova D.V. et al. Monoclonal antibodies as a tool for direct drug delivery system. Abstracts of the second nanotechnology international forum participants. October 6−8. 2009. p. 524−525.
  41. Sokolova D.V., Tazina E.V., Kortava M.A. et al. Rossiiskii bioterapevticheskii zhurnal = Russian biotherapeutic journal. 2010; 9 (2): 90.
  42. Sokolova D.V., Tazina E.V., Kortava M.A. et al. Rossiiskii bioterapevticheskii zhurnal = Russian biotherapeutic journal. 2010; 9 (3): 21.
  43. Khugaeva O.V., Kortava M.A., Sokolova D.V. et al. Rossiiskii bioterapevticheskii zhurnal = Russian biotherapeutic journal. 2010; 9 (2): 91.
  44. Baryshnikov A.Yu., Volkov N.N., Ivanov A.V. et al. Patent na izobretenie «Immunoliposomal'naya forma fotosensibilizatora». № 2009125618. Rossiiskii patent ot 06 iyulya 2009. [Patent for the Invention "Immunoliposomalnaya Form Photosensitizer." № 2009125618. Russian Patent dated July 6, 2009].
  45. Nasonov E.L. Russkii meditsinskii zhurnal = Russian medical journal. 2007; 15 (26): 1−6.
  46. Hanson J.M. et al. MUC1 expression in primary breast cancer: the effect of tamoxifen treatment. Breast Cancer Res. Treat. 2001; 67: 215−222.
  47. Sokolova D.V. Immunoliposomal'nye konstruktsii doksorubitsina i modeli dlya ikh doklinicheskogo issledovaniya. Avtoref. dis. kand. biol. nauk [Immunoliposomalnye Design Doxorubicin and Preclinical Models for their Research. Author’s abstract]. Moscow, 2011. 122 p.
  48. Matsumura Y., Gotoh M., Muro K. et al. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann. Oncol. 2004; 15: 517−525.
  49. Düzgüneş N., Simões S., Lopez-Mesas M., Pedroso de Lima M.C. Intracellular delivery of therapeutic oligonucleotides in pH-sensitive and cationic liposomes. In: G. Gregoriadis eds. Liposome technology. 3rd ed. Vol. III. Interactions of liposomes with the biological milieu. New York: Informa Healthcare USA, Inc. 2007. P. 253−275.
  50. Lasic D.D., Templeton N.S. Liposomes in gene therapy. Adv. Drug. Deliv. Rev. 1996; 20: 221−266.
  51. Ropert C. Liposomes as a gene delivery system. Braz. J. Med. Biol. Res. 1999; 32 (2): 163−169.
  52. Garidel P., Peschka-Süss R. Lipoplexes in gene therapy under the considerations of scaling up, stability issues, and pharmaceutical requirements. In: G. Gregoriadis eds. Liposome technology. 3rd ed. Vol. I. Liposome preparation and related techniques. New York: Informa Healthcare USA, Inc. 2007. P. 97−138.
  53. Garinot M., Masson C., Mignet N. et al. Synthesis and advantages of acid-labile formulations for lipoplexes. In: G. Gregoriadis eds. Liposome technology. 3rd ed. Vol. I. Liposome preparation and related techniques. New York: Informa Healthcare USA, Inc. 2007. P. 139−163.
  54. Ponce A.M., Wright A., Dewhirst M.W., Needham D. Targeted bioavailability of drugs by triggered release from liposomes. Future Lipidol. 2006; 1 (1): 25−34.
  55. Kong G., Dewhirst M.W. Hyperthermia and liposomes. Int. J. Hypertherm. 1999; 15: 345−370.
  56. Kong G., Braun R.D., Dewhirst M.W. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res. 2001; 61: 3027−3032.
  57. Kong G., Braun R.D., Dewhirst M.W. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res. 2000; 60: 4440−4445.
  58. Dewhirst M.W., Prosnitz L., Thrall D. et al. Hyperthermic treatment of malignant diseases: current status and a view toward the future. Semin. Oncol. 1997; 24: 616−625.
  59. Kong G., Anyarambhatla G., Petros W.P. et al. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res. 2000; 60: 6950−6957.
  60. Wiedemann G.J., Robins H.I., Katschinski D.M. et al. Systemic hyperthermia and ICE chemotherapy for sarcoma patients: rationale and clinical status. Anticancer Res. 1997; 17: 2899−2902.
  61. Hauck M.L., LaRue S.M., Petros W.P. et al. Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors. Clin. Cancer Res. 2006; 12 (13): 4004−4010.
  62. Tazina E.V. Sozdanie i biofarmatsevticheskoe obosnovanie termochuvstvitel'noi liposomal'noi lekarstvennoi formy doksorubitsina. Avtoref. dis. kand. farm. nauk [Creating and Biopharmaceutical Study Thermosensitive Liposomal Doxorubicin Dosage Form. Author’s abstract]. Moscow, 2010. 244 p.
  63. Tazina E.V., Ignat'eva E.V., Polozkova A.P. et al. Khimiko-farmatsevticheskii zhurnal = Chemical and pharmaceutical journal. 2008; 42 (12): 30−35.
  64. Tazina E.V., Meshcherikova V.V., Ignat'eva E.V. et al. Rossiiskii bioterapevticheskii zhurnal = Russian biotherapeutic journal. 2009; 1 (8): 40−47.
  65. Tazina E.V., Polozkova A.P., Orlova O.L. et al. Preparation and investigation of biological activity of thermosensitive liposomes loaded with doxorubicin. Technical Proceedings of the 2008 Nanotechnology Conference and Trade Show (June 1−5, Boston, Massachusetts, USA). 2008; 2: 53−56.
  66. Bisby R.H., Mead C., Morgan C.G. Active uptake of drugs into photosensitive liposomes and rapid release on UV photolysis. Photochemistry and Photobiology. 2000; 72 (1): 57−61.
  67. Huang Z., Szoka F.C. Bioresponsive liposomes and their use for macromolecular delivery. In: G. Gregoriadis eds. Liposome technology. 3rd edn. Vol. I. Liposome preparation and related techniques. New York: Informa Healthcare USA, Inc. 2007. pp. 165−196.

Statistics

Views

Abstract - 413

PDF (Russian) - 1389

Cited-By


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies