99mTc-Labelled Low Molecular Weight Inhibitors of Prostate-Specific Membrane Antigen

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

High morbidity and mortality rates of prostate cancer (PCa) determine the requirement of looking for new methods of its early diagnosis. Methods of nuclear medicine have a special place in addressing this problem as they allow functional, metabolic and other processes imaging in body, which occur during the cancer development. This approach supposes the use of radiopharmaceuticals (RP), which are capable of selective binding to a specific biological target, for example, prostate-specific membrane antigen (PSMA), which is known to be overexpressed in PCa. Current development of new radiotracers for PCa imaging is focused on low molecular weight PSMA inhibitors due to their high specific binding to PSMA and rapid urinary excretion. Technetium-99m remains the appropriate radionuclide for diagnostic studies due to its optimal nuclear properties, ease of production and versatile coordination chemistry. Therefore, single-photon emission computed tomography (SPECT) imaging with 99mTc-PSMA radioligands can be a cost effective alternative to PET with 68Ga- or 18F-labeled RP. The aim of this review is to summarize and analyze currently available data on 99mTc-labeled low molecular weight PSMA inhibitors for metastatic PCa imaging.

Full Text

Restricted Access

About the authors

Viktoriia K. Tishchenko

A. Tsyb Medical Radiological Research Centre

Email: vikshir82@mail.ru
ORCID iD: 0000-0001-8983-5976
SPIN-code: 2724-0930

PhD in Biology

Russian Federation, 4, Korolyova str., 249036, Obninsk, Kaluga Region

Vasily M. Petriev

A. Tsyb Medical Radiological Research Centre; National Research Nuclear University MEPHI (Moscow Engineering Physics Institute)

Email: petriev@mrrc.obninsk.ru
ORCID iD: 0000-0002-0231-2177
SPIN-code: 3769-6210

PhD in Biology

Russian Federation, 4, Korolyova str., 249036, Obninsk, Kaluga Region; Moscow

Oksana P. Vlasova

A. Tsyb Medical Radiological Research Centre; National Medical Research Radiological Centre

Author for correspondence.
Email: somina@inbox.ru
ORCID iD: 0000-0001-5170-9595
SPIN-code: 2554-3985

PhD in Biology

Russian Federation, 4, Korolyova str., 249036, Obninsk, Kaluga Region; Obninsk, Kaluga Region

Andrei A. Pankratov

P.A. Hertsen Moscow Oncology Research Institute

Email: andreimnioi@yandex.ru
ORCID iD: 0000-0001-7291-9743
SPIN-code: 5463-3790

PhD in Biology

Russian Federation, Moscow

Natalia B. Morozova

P.A. Hertsen Moscow Oncology Research Institute

Email: n.b.morozova@yandex.ru
ORCID iD: 0000-0002-7159-805X
SPIN-code: 1286-6518

PhD in Biology

Russian Federation, Moscow

Petr V. Shegai

National Medical Research Radiological Centre

Email: dr.shegai@mail.ru
ORCID iD: 0000-0001-8901-4596
SPIN-code: 6849-3221

MD, PhD

Russian Federation, Obninsk, Kaluga Region

Sergei A. Ivanov

A. Tsyb Medical Radiological Research Centre; RUDN University

Email: oncourolog@gmail.com
ORCID iD: 0000-0001-7689-6032
SPIN-code: 4264-5167

MD, PhD, Professor, Corresponding Member of the RAS

Russian Federation, 4, Korolyova str., 249036, Obninsk, Kaluga Region; Moscow

Andrei D. Kaprin

National Medical Research Radiological Centre; P.A. Hertsen Moscow Oncology Research Institute; RUDN University

Email: kaprin@mail.ru
ORCID iD: 0000-0001-8784-8415
SPIN-code: 1759-8101

MD, PhD, Professor, Academician of the RAS

Russian Federation, Obninsk, Kaluga Region; Moscow; Moscow

References

  1. Global Cancer Observatory. Available from: https://gco.iarc.fr (accessed: 12.04.2022).
  2. Состояние онкологической помощи населению России в 2020 году / под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. — М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. — 239 с. [Sostoyanie onkologicheskoj pomoshchi naseleniyu Rossii v 2020 godu / pod red. AD Kaprina, VV Starinskogo, AO Shahzadovoj. Moscow: MNIOI im. P.A. Gercena — filial FGBU “NMIC radiologii” Minzdrava Rossii; 2021. 239 s. (In Russ.)]
  3. Mottet N, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol. 2021;79(2):243–262. doi: https://doi.org/10.1016/j.eururo.2020.09.042
  4. Xu X, Zhang J, Hu S, et al. 99mTc-labeling and evaluation of a HYNIC modified small-molecular inhibitor of prostate-specific membrane antigen. Nucl Med Biol. 2017;48:69–75. doi: https://doi.org/10.1016/j.nucmedbio.2017.01.010
  5. Walker SM, Lim I, Lindenberg L, et al. Positron emission tomography (PET) radiotracers for prostate cancer imaging. Abdom Radiol (NY). 2020;45(7):2165–2175. doi: https://doi.org/10.3390/ijms23095023
  6. Stott Reynolds TJ, Smith CJ, Lewis MR. Peptide-Based Radiopharmaceuticals for Molecular Imaging of Prostate Cancer. Adv Exp Med Biol. 2018;1096:135–158. doi: https://doi.org/10.1007/978-3-319-99286-0_8
  7. Kuppermann D, Calais J, Marks LS. Imaging Prostate Cancer: Clinical Utility of Prostate-Specific Membrane Antigen. J Urol. 2022; 207(4):769–778. doi: https://doi.org/10.1097/JU.0000000000002457
  8. Леонтьев А.В., Халимон А.И., Кулиев М.Т., и др. Современные возможности применения радиофармпрепаратов на основе лигандов к простатспецифическому мембранному антигену, меченных 99mTc, при раке предстательной железы // Онкоурология. — 2021. — Т. 17. — № 4. — С. 136–150. [Leontyev AV, Khalimon AI, Kuliev MT, et al. Modern possibilities of application 99mTc-labeled prostate-specific membrane antigen ligands in prostate cancer. Onkourologiya = Cancer Urology. 2021;17(4):136–150. (In Russ.)] doi: https://doi.org/10.17650/1726-9776-2021-17-4-136-150
  9. Duatti A. Review on 99mTc radiopharmaceuticals with emphasis on new advancements. Nucl Med Biol. 2021;92:202–216. doi: https://doi.org/10.1016/j.nucmedbio.2020.05.005
  10. Gourni E, Henriksen G. Metal-Based PSMA Radioligands. Molecules. 2017;22(4):523. doi: https://doi.org/10.3390/molecules22040523
  11. Brunello S., Salvarese N, Carpanese D, et al. A Review on the Current State and Future Perspectives of [99mTc]Tc-Housed PSMA-i in Prostate Cancer. Molecules. 2022;27(9):2617. doi: https://doi.org/10.3390/molecules27092617
  12. Czerwińska M, Bilewicz A, Kruszewski M, et al. Targeted Radionuclide Therapy of Prostate Cancer — From Basic Research to Clinical Perspectives. Molecules. 2020;25(7):1743. doi: https://doi.org/10.3390/molecules25071743
  13. Mattias J, Engelhardt J, Schäfer M, et al. Cytoplasmic Localization of Prostate-Specific Membrane Antigen Inhibitors May Confer Advantages for Targeted Cancer Therapies. Cancer Res. 2021;81(8):2234–2245. doi: https://doi.org/10.1158/0008-5472.CAN-20-1624
  14. Kopka K, Benešova M, Barinka C, et al. Glu-Ureido-Based Inhibitors of Prostate-Specific Membrane Antigen: Lessons Learned During the Development of a Novel Class of Low-Molecular-Weight Theranostic Radiotracers. J Nucl Med. 2017;58(Suppl 2):17S–26S. doi: https://doi.org/10.2967/jnumed.116.186775
  15. Марук А.Я., Брускин А.Б., Кодина Г.Е. Новые радиофармпрепараты на основе 99mTc с применением бифункциональных хелатирующих агентов // Радиохимия. — 2011. — Т. 53. — № 4. — С. 289–300. [Maruk AYa, Bruskin AB, Kodina GE. Novel 99mTc radiopharmaceuticals with bifunctional chelating agents. Radiochemistry. 2011;53(4):341–353. (In Russ.)]. doi: https://doi.org/10.1134/S1066362211040011
  16. Banerjee SR, Foss CA, Castanares M, et al. Synthesis and Evaluation of Technetium-99m- and Rhenium-Labeled Inhibitors of the Prostate-Specific Membrane Antigen (PSMA). J Med Chem. 2008;51(15):4504–4517. doi: https://doi.org/10.1021/jm800111u
  17. Banerjee SR, Pullambhatla M, Foss CA, et al. Effect of Chelators on the Pharmacokinetics of 99mTc-Labeled Imaging Agents for the Prostate-Specific Membrane Antigen (PSMA). J Med Chem. 2013;56(15):6108–6121. doi: https://doi.org/10.1021/jm400823w
  18. Lu G, Maresca KP, Hillier SM, et al. Synthesis and SAR of 99mTc/Re-Labeled Small Molecule Prostate Specific Membrane Antigen Inhibitors with Novel Polar Chelates. Bioorg Med Chem Lett. 2013;23(5):1557–1563. doi: https://doi.org/10.1016/j.bmcl.2012.09.014
  19. Hillier SM, Maresca KP, Lu G, et al. 99mTc-Labeled Small-Molecule Inhibitors of Prostate-Specific Membrane Antigen for Molecular Imaging of Prostate Cancer. J Nucl Med. 2013;54(8):1369–1376. doi: https://doi.org/10.2967/jnumed.112.116624
  20. Kimura H, Sampei S, Matsuoka D, et al. Development of 99mTc-labeled asymmetric urea derivatives that target prostate-specific membrane antigen for single-photon emission computed tomography imaging. Bioorg Med Chem. 2016;24(10):2251–2256. doi: https://doi.org/10.1016/j.bmc.2016.03.051
  21. Lodhi NA, Park JY, Kim K, et al. Synthesis and Evaluation of 99mTc-Tricarbonyl Labeled Isonitrile Conjugates for Prostate-Specific Membrane Antigen (PSMA) Image. Inorganics. 2020;8(1):5. doi: https://doi.org/10.3390/inorganics8010005
  22. Xiao D, Duan X, Gan Q, et al. Preparation and Biological Evaluation of [99mTc]Tc-CNGU as a PSMA-Targeted Radiotracer for the Imaging of Prostate Cancer. Molecules. 2020;25(23):5548. doi: https://doi.org/10.3390/molecules25235548
  23. Kularatne SA, Zhou Z, Yang J, et al. Design, Synthesis, and Preclinical Evaluation of Prostate-Specific Membrane Antigen Targeted 99mTc-Radioimaging Agents. Mol Pharm. 2009;6(3):790–800. doi: https://doi.org/10.1021/mp9000712
  24. Robu S, Schottelius M, Eiber M, et al. Preclinical Evaluation and First Patient Application of 99mTc-PSMA-I&S for SPECT Imaging and Radioguided Surgery in Prostate Cancer. J Nucl Med. 2017;58(2):235–242. doi: https://doi.org/10.2967/jnumed.116.178939
  25. Rauscher I, Duwel C, Wirtz M, et al. Value of 111In-prostate-specific membrane antigen (PSMA)-radioguided surgery for salvage lymphadenectomy in recurrent prostate cancer: Correlation with histopathology and clinical follow-up. BJU Int. 2017;120(1):40–47. doi: https://doi.org/10.1111/bju.13713
  26. Jilg CA, Reichel K, Stoykow C, et al. Results from extended lymphadenectomies with [111In]PSMA-617 for intraoperative detection of PSMA-PET/CT-positive nodal metastatic prostate cancer. EJNMMI Res. 2020;10(1):17. doi: https://doi.org/10.1186/s13550-020-0598-2
  27. Ferro-Flores G, Luna-Gutierrez M, Ocampo-Garcia B, et al. Clinical translation of a PSMA inhibitor for 99mTc-based SPECT. Nucl Med Biol. 2017;48:36–44. doi: https://doi.org/10.1016/j.nucmedbio.2017.01.012
  28. Mosayebnia M, Hajimahdi Z, Beiki D, et al. Design, Synthesis, Radiolabeling and Biological Evaluation of New Urea-Based Peptides Targeting Prostate Specific Membrane Antigen. Bioorg Chem. 2020;99:103743. doi: https://doi.org/10.1016/j.bioorg.2020.103743
  29. Sikora AE, Maurin M, Jaron AW, et al. PSMA Inhibitor Derivatives for Labelling with 99mTc via HYNIC, a Radiopharmaceutical Kit, Radiopharmaceutical Preparations and Their Use in Prostate Cancer Diagnostics. Bulletin Number EP3721907A1. European Patent; 2020.
  30. Vats K, Agrawal K, Sharma R, et al. Preparation and clinical translation of 99mTc-PSMA-11 for SPECT imaging of prostate cancer. Medchemcomm. 2019;10(12):2111–2117. doi: https://doi.org/10.1039/c9md00401g
  31. Vallabhajosula S, Nikolopoulou A, Babich JW, et al. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen: pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer. J Nucl Med. 2014;55(11):1791–1798. doi: https://doi.org/10.2967/jnumed.114.140426
  32. Goffin KE, Joniau S, Tenke P, et al. Phase 2 study of 99mTc-Trofolastat SPECT/CT to identify and localize prostate cancer in intermediate- and high-risk patients undergoing radical prostatectomy and extended pelvic LN dissection. J Nucl Med. 2017;58(9):1408– 1413. doi: https://doi.org/10.2967/jnumed.116.187807
  33. Schmidkonz C, Cordes M, Beck M, et al. SPECT/CT with the PSMA Ligand 99mTc-MIP-1404 for Whole-Body Primary Staging of Patients With Prostate Cancer. Clin Nucl Med. 2018;43(4):225–231. doi: https://doi.org/10.1097/RLU.0000000000001991
  34. Schmidkonz C, Atzinger A, Goetz TI, et al. 99mTc-MIP-1404 SPECT/CT for Patients with Metastatic Prostate Cancer: Interobserver and Intraobserver Variability in Treatment-Related Longitudinal Tracer Uptake Assessments of Prostate-Specific Membrane Antigen-Positive Lesions. Clin Nucl Med. 2020;45(2):105–112. doi: https://doi.org/10.1097/RLU.0000000000002880
  35. Schmidkonz C, Hollweg C, Beck M, et al. 99mTc-MIP-1404-SPECT/CT for the Detection of PSMA-Positive Lesions in 225 Patients with Biochemical Recurrence of Prostate Cancer. Prostate. 2018;78(1):54–63. doi: https://doi.org/10.1002/pros.23444
  36. Reinfelder J, Kuwert T, Beck M, et al. First Experience with SPECT/CT Using a 99mTc-Labeled Inhibitor for Prostate-Specific Membrane Antigen in Patients with Biochemical Recurrence of Prostate Cancer. Clin Nucl Med. 2017;42(1):26–33. doi: https://doi.org/10.1097/RLU.0000000000001433
  37. Schmidkonz C, Götz TI, Atzinger A, et al. 99mTc-MIP-1404 SPECT/CT for Assessment of Whole-Body Tumor Burden and Treatment Response in Patients with Biochemical Recurrence of Prostate Cancer. Clin Nucl Med. 2020;45(8):e349–e357. doi: https://doi.org/10.1097/RLU.0000000000003102
  38. Schmidkonz C, Goetz TI, Kuwert T, et al. PSMA SPECT/ CT with 99mTc-MIP-1404 in Biochemical Recurrence of Prostate Cancer: Predictive Factors and Efficacy for the Detection of PSMA-Positive Lesions at Low and Very-Low PSA Levels. Ann Nucl Med. 2019;33(12):891–898. doi: https://doi.org/10.1007/s12149-019-01400-6
  39. Schmidkonz C, Cordes M, Beck M, et al. Assessment of Treatment Response by 99mTc-MIP-1404 SPECT/CT: A Pilot Study in Patients with Metastatic Prostate Cancer. Clin Nucl Med. 2018;43(8):e250–e258. doi: https://doi.org/10.1097/RLU.0000000000002162
  40. Ellis WJ, Donnelly BJ, Gorin MA, et al. PD60-11 phase 3 study to evaluate the safety and efficacy of 99mTc-MIP-1404 SPECT/CT imaging to detect clinically significant prostate cancer in men with biopsy proven low grade prostate cancer who are candidates for active surveillance (PROSPECT-AS). J Urol. 2019;201(Suppl4):e1100. doi: https://doi.org/10.1097/01.JU.0000557222.99762.6b
  41. Maurer T, Robu S, Schottelius M, et al. 99mTechnetium-based Prostate-specific Membrane Antigen-radioguided Surgery in Recurrent Prostate Cancer. Eur Urol. 2019;75(4):659–666. doi: https://doi.org/10.1016/j.eururo.2018.03.013
  42. Mix M, Schultze-Seemann W, von Büren M, et al. 99mTc-Labelled PSMA Ligand for Radio-Guided Surgery in Nodal Metastatic Prostate Cancer: Proof of Principle. EJNMMI Res. 2021;11(1):22. doi: https://doi.org/10.1186/s13550-021-00762-1
  43. Horn T, Kronke M, Rauscher I, et al. Single Lesion on Prostate-specific Membrane Antigen-ligand Positron Emission Tomography and Low Prostate-specific Antigen Are Prognostic Factors for a Favorable Biochemical Response to Prostate-specific Membrane Antigen-targeted Radioguided Surgery in Recurrent Prostate Cancer. Eur Urol. 2019;76(4):517–523. doi: https://doi.org/10.1016/j.eururo.2019.03.045
  44. Werner P, Neumann C, Eiber M, et al. [99cmTc]Tc-PSMA-I&S-SPECT/CT: Experience in prostate cancer imaging in an outpatient center. EJNMMI Res. 2020;10(1):45. doi: https://doi.org/10.1186/s13550-020-00635-z
  45. Albalooshi B, Al Sharhan M, Bagheri F, et al. Direct Comparison of 99mTc-PSMA SPECT/CT and 68Ga-PSMA PET/CT in Patients with Prostate Cancer. Asia Ocean J Nucl Med Biol. 2020;8(1):1–7. doi: https://doi.org/10.22038/aojnmb.2019.43943.1293
  46. Urbán S, Meyer C, Dahlbom M, et al. Radiation Dosimetry of 99mTc-PSMA I&S: A Single-Center Prospective Study. J Nucl Med. 2021;62(8):1075–1081. doi: https://doi.org/10.2967/jnumed.120.253476
  47. Santos-Cuevas C, Davanzo J, Ferro-Flores G, et al. 99mTc-labeled PSMA inhibitor: Biokinetics and radiation dosimetry in healthy subjects and imaging of prostate cancer tumors in patients. Nucl Med Biol. 2017;52:1–6. doi: https://doi.org/10.1016/j.nucmedbio.2017.05.005
  48. Lawal IO, Ankrah AO, Mokgoro NP, et al. Diagnostic sensitivity of Tc-99m HYNIC PSMA SPECT/CT in prostate carcinoma: a comparative analysis with Ga-68 PSMA PET/CT. Prostate. 2017;77(11):1205–1212. doi: https://doi.org/10.1002/pros.23379
  49. García-Pérez FO, Davanzo J, López-Buenrostro S, et al. Head to Head Comparison Performance of 99mTc-EDDA/HYNIC-IPSMA SPECT/CT and 68Ga-PSMA-11 PET/CT a Prospective Study in Biochemical Recurrence Prostate Cancer Patients. Am J Nucl Med Mol Imaging. 2018;8(5):332–340.
  50. Fallahi B, Khademi N, Karamzade-Ziarati N, et al. 99mTc-PSMA SPECT/CT Versus 68Ga-PSMA PET/CT in the Evaluation of Metastatic Prostate Cancer. Clin Nucl Med. 2021;46(2):e68–e74. doi: https://doi.org/10.1097/RLU.0000000000003410
  51. Kabunda J, Gabela L, Kalinda C, et al. Comparing 99mTc-PSMA to 99mTc-MDP in Prostate Cancer Staging of the Skeletal System. Clin Nucl Med. 2021;46(7):562–568. doi: https://doi.org/10.1097/RLU.0000000000003702
  52. Vallejo-Armenta P, Soto-Andonaegui J, Villanueva-Pérez RM, et al. [99mTc]Tc-IPSMA SPECT Brain Imaging as a Potential Specific Diagnosis of Metastatic Brain Tumors and High-Grade Gliomas. Nucl Med Biol. 2021;96–97:1–8. doi: https://doi.org/10.1016/j.nucmedbio.2021.02.003
  53. Liu C, Zhu Y, Su H, et al. Relationship between PSA Kinetics and Tc-99m HYNIC PSMA SPECT/CT Detection Rates of Biochemical Recurrence in Patients with Prostate Cancer after Radical Prostatectomy. Prostate. 2018;78(16):1215–1221. doi: https://doi.org/10.1002/pros.23696
  54. Su HC, Zhu Y, Ling GW, et al. Evaluation of 99mTc-Labeled PSMA-SPECT/CT Imaging in Prostate Cancer Patients Who Have Undergone Biochemical Relapse. Asian J Androl. 2017;19(3):267–271. doi: https://doi.org/10.4103/1008-682X.192638
  55. Su H, Zhu Y, Hu S, et al. The Value of 99mTc-PSMA SPECT/CT-Guided Surgery for Identifying and Locating Lymph Node Metastasis in Prostate Cancer Patients. Ann Surg Oncol. 2019;26(2):653–659. doi: https://doi.org/10.1245/s10434-018-6805-y
  56. Li P, Liu C, Wu S, et al. Combination of 99mTc-Labeled PSMA-SPECT/CT and Diffusion-Weighted MRI in the Prediction of Early Response after Carbon Ion Therapy in Prostate Cancer: A Non-Randomized Prospective Pilot Study. Cancer Manag Res. 2021;13:2191–2199. doi: https://doi.org/10.2147/CMAR.S285167
  57. Ćwikła JB, Roslan M, Skoneczna I, et al. Initial Experience of Clinical Use of [99mTc]Tc-PSMA-T4 in Patients with Prostate Cancer. A Pilot Study. Pharmaceuticals (Basel). 2021;14(11):1107. doi: https://doi.org/10.3390/ph14111107
  58. Sergieva S, Mangaldgiev R, Dimcheva M, et al. SPECT-CT Imaging with [99mTc]PSMA-T4 in Patients with Recurrent Prostate Cancer. Nucl Med Rev Cent East Eur. 2021;24(2):70–81. doi: https://doi.org/10.5603/NMR.2021.0018
  59. Singh B, Sharma S, Bansal P, et al. Comparison of the Diagnostic Utility of 99mTc-PSMA Scintigraphy versus 68Ga-PSMA-11 PET/CT in the Detection of Metastatic Prostate Cancer and Dosimetry Analysis: A Gamma-Camera-Based Alternate Prostate-Specific Membrane Antigen Imaging Modality. Nucl Med Commun. 2021;42(5):482–489. doi: https://doi.org/10.1097/MNM.0000000000001361

Supplementary files

Supplementary Files
Action
1. Table 1. Fig. 1

Download (52KB)
2. Table 1. Fig. 2

Download (37KB)
3. Table 1. Fig. 3

Download (81KB)
4. Table 1. Fig. 4

Download (22KB)
5. Table 1. Fig. 5

Download (45KB)
6. Table 1. Fig. 6

Download (30KB)
7. Table 1. Fig. 7

Download (45KB)
8. Table 1. Fig. 8

Download (63KB)
9. Table 1. Fig. 9

Download (39KB)
10. Table 1. Fig. 10

Download (21KB)
11. Table 1. Fig. 11

Download (28KB)
12. Table 1. Fig. 12

Download (26KB)
13. Table 1. Fig. 13

Download (70KB)
14. Table 1. Fig. 14

Download (34KB)
15. Table 1. Fig. 15

Download (24KB)

Copyright (c) 2023 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies