Preview

Вестник Российской академии медицинских наук

Расширенный поиск

Генерация антибиотикотолерантных бактерий при гематологических и онкологических заболеваниях, сопровождающихся иммунокомпрометацией: новая проблема инфекций, связанных с оказанием медицинской помощи

https://doi.org/10.15690/vramn687

Полный текст:

Аннотация

Обоснование. Антибиотикотолерантность (АТ) ― одна из причин феномена антибиотикоустойчивости ― обеспечивает ускользание нереплицирующихся и метаболически инертных микроорганизмов (персистеров) от воздействия любых антибиотиков вследствие отсутствия биологических мишеней воздействия последних, тем самым создавая потенциал для хронизации инфекций. 

Цель: установление факта гетерогенности клинических изолятов условно-патогенных микроорганизмов Escherichia сoli и Pseudomonas aeruginosa, выделенных от детей с онкогематологическими заболеваниями, по содержанию персистеров, несущих феномен АТ. 

Методы. Детей с онкогематологическими заболеваниями разделили на 2 группы в зависимости от интенсивности антибиотикотерапии инфекционных осложнений (менее или более 5 антибиотиков за госпитализацию). В биоматериале, полученном от больных детей, in vitro определяли количество ципрофлоксацининдуцированных бактерий-персистеров. 

Результаты. Среди изученных штаммов, около 1/3 характеризуется высоким содержанием персистеров, обеспечивающих быстрое восстановление численности популяции после антибиотической атаки in vitro. Содержание персистеров не коррелировало с определенной ранее минимальной подавляющей концентрацией ципрофлоксацина (r=0,148; n=25; p>0,05). Высокий уровень формирования персистеров у штаммов условно-патогенных микроорганизмов E. coli и P. aeruginosa ассоциирован с более высоким уровнем инфекционных осложнений и неблагоприятным течением основного заболевания у детей, страдающих онкогематологическими заболеваниями. Штаммы E. coli и P. aeruginosa, выделенные из крови, бронхоальвеолярного лаважа, мочи и мазков со слизистых оболочек пациентов, получивших массивную антибиотикотерапию (5 и более антибиотиков в течение 2−3-недельного курса лечения), достоверно чаще характеризовались высоким уровнем содержания персистеров (более 1000 КОЕ/мл), по сравнению со штаммами, выделенными от детей, в лечении которых использовано меньшее число антибактериальных препаратов. 

Выводы. Количественная оценка персистирующих форм патогенных и условно-патогенных микроорганизмов у больных, страдающих онкогематологическими заболеваниями, может быть рекомендована к включению в алгоритм исследований при клинико-микробиологическом мониторинге больных и внутрибольничной среды.

Об авторах

Алексей Викторович Тутельян
Центральный НИИ эпидемиологии, Москва; Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачёва, Москва; Первый Московский государственный медицинский университет им. И.М. Сеченова, Москва
Россия
Доктор медицинских наук, заведующий лабораторией инфекций, связанных с оказанием медицинской помощи, Центрального НИИ эпидемиологии Роспотребнадзора; профессор кафедры эпидемиологии ИПО Первого МГМУ им. И.М. Сеченова


Владимир Митрофанович Писарев
Центральный НИИ эпидемиологии, Москва; Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачёва, Москва; НИИ общей реаниматологии им. В.А. Неговского, Москва
Россия
Доктор медицинских наук, профессор, заведующий лабораторией молекулярных механизмов критических состояний НИИ общей реаниматологии им. В.А. Неговского


Наталья Захаровна Минаева
Центральный НИИ эпидемиологии, Москва
Россия


Андрей Михайлович. Гапонов
Центральный НИИ эпидемиологии, Москва; Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачёва, Москва; НИИ общей реаниматологии им. В.А. Неговского, Москва
Россия
Кандидат медицинских наук, заведующий лабораторией инфекционной иммунологии ФНКЦ ДГОИ им. Дмитрия Рогачёва


Александра Николаевна Грачёва
Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачёва, Москва
Россия
Бактериолог отдела инфекционного контроля 


Галина Геннадьевна Солопова
Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачёва, Москва
Россия
Кандидат медицинских наук, заведующая отделом инфекционного контроля


Список литературы

1. Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature. 1940;146(3713):837. doi: 10.1038/146837a0.

2. Bigger JW. Treatment of staphylococcal infections with penicillin by intermittent sterilization. Lancet. 1944,244(6320):497–500. doi: 10.1016/S0140-6736(00)74210-3.

3. Levin BR. Microbiology: Noninherited resistance to antibiotics. Science. 2004;305(5690):1578–1579. doi: 10.1126/science.1103077.

4. Gillings MR, Stokes HW. Are humans increasing bacterial evolvability? Trends Ecol Evol. 2012;27(6):346–352. doi: 10.1016/j.tree.2012.02.006.

5. Kahrstrom CT. Antimicrobials: persisters come under fire. Nat Rev Microbiol. 2014;12(1):3. doi: 10.1038/nrmicro3181

6. Mc Dermott W. Microbial persistence. Yale J Biol Med. 1958;30(4):257–229.

7. Balaban NQ, Merrin J, Chait R, et al. Bacterial persistence as a phenotypic switch. Science. 2004;305(5690):1622–1625. doi: 10.1126/science.1099390.

8. Lewis K. Persister cells. Annu Rev Microbiol. 2010;64:357–372. doi: 10.1146/annurev.micro.112408.134306.

9. Balaban NQ. Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr Opin Genet Dev. 2011;21(6):768–775. doi: 10.1016/j.gde.2011.10.001.

10. Kint CI, Verstraeten N, Fauvart M, Michiels J. New-found fundamentals of bacterial persistence. Trends Microbiol. 2012;20(12):577–585. doi: 10.1016/j.tim.2012.08.009.

11. Verstraeten N, Knapen W, Fauvart M, Michiels J. A historical perspective on bacterial persistence. Methods Mol Biol. 2016;1333:3–13. doi: 10.1007/978-1-4939-2854-5_1.

12. Lewis K. Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol. 2008;322:107–131. doi: 10.1007/978-3-540-75418-3_6.

13. Römling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med. 2012;272(6):541–561. doi: 10.1111/joim.12004.

14. Эль-Регистан Г.И., Николаев Ю.А., Мулюкин А.Л., и др. Явление персистенции ― формы и механизмы выживаемости популяций // Медицинский алфавит. ― 2014. ― Т. 2. ― №10. ― С. 49–54. [El’-Registan GI, Nikolaev YuA, Mulyukin AL, et al. Yavlenie persistentsii ― formy i mekhanizmy vyzhivaemosti populyatsii. Meditsinskii alfavit. 2014;2(10):49–54. (In Russ).]

15. Kim JS, Heo P, Yang TJ, et al. Bacterial persisters tolerate antibiotics by not producing hydroxyl radicals. Biochem Biophys Res Commun. 2011;413(1):105–110. doi: 10.1016/j.bbrc.2011.08.063.

16. Lewis K. Persister cells: molecular mechanisms related to antibiotic tolerance. Handb Exp Pharmacol. 2012(211):121-133. doi: 10.1007/978-3-642-28951-4_8.

17. Li Y, Zhang Y. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob Agents Chemother. 2007;51(6):2092–2099. doi: 10.1128/aac.00052-07.

18. Balaban NQ, Gerdes K, Lewis K, McKinney JD. A problem of persistence: still more questions than answers? Nat Rev Microbiol. 2013;11(8):587–591. doi: 10.1038/nrmicro3076.

19. Conlon BP, Rowe SE, Lewis K. Persister cells in biofilm associated infections. Adv Exp Med Biol. 2015;831:1–9. doi: 10.1007/978-3-319-09782-4_1.

20. Delarze E, Sanglard D. Defining the frontiers between antifungal resistance, tolerance and the concept of persistence. Drug Resist Updat. 2015;23:12−19. doi: 10.1016/j.drup.2015.10.001.

21. Kaldalu N, Joers A, Ingelman H, Tenson T. A general method for measuring persister levels in Escherichia coli cultures. Methods Mol Biol. 2016;1333:29–42. doi: 10.1007/978-1-4939-2854-5_3.

22. Moker N, Dean CR, Tao J. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol. 2010;192(7):1946–1955. doi: 10.1128/JB.01231-09.

23. Keilin D. The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B Biol Sci. 1959;150(939):149–191. doi: 10.1098/rspb.1959.0013.

24. Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev. 2015;39(4):567–591. doi: 10.1093/femsre/fuv013.

25. Fauvart M, De Groote VN, Michiels J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol. 2011;60(6):699–709. doi: 10.1099/jmm.0.030932-0.

26. Wayne LG, Sohaskey CD. Nonreplicating persistence of mycobacterium tuberculosis. Annu Rev Microbiol. 2001;55:139–163. doi: 10.1146/annurev.micro.55.1.139.

27. Trecarichi EM, Tumbarello M. Antimicrobial-resistant Gram-negative bacteria in febrile neutropenic patients with cancer: current epidemiology and clinical impact. Curr Opin Infect Dis. 2014;27(2):200–210. doi: 10.1097/QCO.0000000000000038.25.

28. Khurana M, Lee B, Feusner JH. Fever at diagnosis of pediatric acute lymphoblastic leukemia: are antibiotics really necessary? J Pediatr Hematol Oncol. 2015;37(7):498–501. doi: 10.1097/MPH.0000000000000417.

29. Nolt D, Lindemulder S, Meyrowitz J, et al. Preventive antibiotics in pediatric patients with acute myeloid leukemia (AML). Pediatr Blood Cancer. 2015;62(7):1149–1154. doi: 10.1002/pbc.25463.

30. Blennow O, Ljungman P. The challenge of antibiotic resistance in haematology patients. Br J Haematol. 2016;172(4):497–511. doi: 10.1111/bjh.13816.

31. Cohen NR, Lobritz MA, Collins JJ. Microbial persistence and the road to drug resistance. Cell Host Microbe. 2013;13(6):632–642. doi: 10.1016/j.chom.2013.05.009.

32. Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2007;5(1):48–56. doi: 10.1038/nrmicro1557.

33. Grant SS, Hung DT. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence. 2013;4(4):273–283. doi: 10.4161/viru.23987.

34. Fothergill JL, Winstanley C, James CE. Novel therapeutic strategies to counter Pseudomonas aeruginosa infections. Expert Rev Anti Infect Ther. 2012;10(2):219–235. doi: 10.1586/eri.11.168.

35. Тутельян А.В., Гапонов А.М., Писарев В.М., Эльрегистан Г.И. Дормантное состояние микроорганизмов и профилактика инфекций, связанных с оказанием медицинской помощи // Терапевтический архив. ― 2015. ― Т. 87. ― №11. ― С. 103–108. [Tutelyan AV, Gaponov AM, Pisarev VM, Elregistan GI. Microbial dormancy and prevention of healthcare-associated infections. Ter Arkh. 2015;87(11):103–108. (In Russ).]


Для цитирования:


Тутельян А.В., Писарев В.М., Минаева Н.З., Гапонов А.М., Грачёва А.Н., Солопова Г.Г. Генерация антибиотикотолерантных бактерий при гематологических и онкологических заболеваниях, сопровождающихся иммунокомпрометацией: новая проблема инфекций, связанных с оказанием медицинской помощи. Вестник Российской академии медицинских наук. 2016;71(3). https://doi.org/10.15690/vramn687

For citation:


Tutelyan A.V., Pisarev V.M., Minaeva N.Z., Gaponov A.M., Gracheva A.N., Solopova G.G. Generation of Antibiotic Tolerant Bacterial Persisters in Immunocompromized Patients with Hematologic and Malignant Diseases: A New Problem of Health-Care Associated Infections. Annals of the Russian academy of medical sciences. 2016;71(3). (In Russ.) https://doi.org/10.15690/vramn687

Просмотров: 473


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0869-6047 (Print)
ISSN 2414-3545 (Online)