INDIVIDUAL PRECONSCIOUS AFFECTIVE BIASES TO THREATENING AND APPETITIVE FACIAL STIMULI AND CARDIOVASCULAR STRESS-REACTIVITY

Cover Page


Cite item

Full Text

Abstract

Aim: to investigate cardiovascular stress-reactivity in association with individual preconscious affective biases to threatening and appetitive facial stimuli. Patients and methods: preconscious affective biases were assessed in healthy individuals (n =38, mean age M =28,10 years, 1SD =8,64) using a modified (masked) version of a pictorial emotional Stroop task (backward masking of the angry, fearful and joyful faces). Results: it was revealed that individual preconscious bias to speeded up perception of angry faces correlates significantly with heightened anxiety, lowered platelet serotonin (5-HT) levels, sustained central overactivation of at rest (as indexed by lowered delta, theta, and beta-1 EEG power over frontal, central and posterior cortical areas) and exaggerated arterial blood pressure stress-reactivity during re-experiencing of personally relevant anger. Conclusions: considering uncovered associations, individuals with preconscious bias to speeded up perception of angry faces may be regarded as having enhanced risk to fall sick with essential hypertension, yet this perceptive bias could be seen as a putative neurobehavioral predictor of the risk.

 

About the authors

L. I. Aftanas

Scientific Research Institute of Physiology and Basic Medicine under the Siberian Branch of RAMS, Novosibirsk, Russian Federation

Author for correspondence.
Email: l.aftanas@physiol.ru
PhD, professor, academician of RAMS, Head of the Laboratory of Psychophysiology of State Research Institute of Physiology and Fundamental Medicine under the Siberian Branch of the Russian Academy of Medical Sciences. Address: 4, Timakov Street, Novosibirsk, RF, 630117, tel.: +7 (383) 335-98-55 Russian Federation

S. V. Pavlov

Scientific Research Institute of Physiology and Basic Medicine under the Siberian Branch of RAMS, Novosibirsk, Russian Federation

Email: pavlov@physiol.ru
MD, senior research scientist of the Laboratory of Psychophysiology of State Research Institute of Physiology and Fundamental Medicine under the Siberian Branch of the Russian Academy of Medical Sciences. Address: 4, Timakov Street, Novosibirsk, RF, 630117, tel.: +7 (383) 335-98-55 Russian Federation

I. V. Brak

Scientific Research Institute of Physiology and Basic Medicine under the Siberian Branch of RAMS, Novosibirsk, Russian Federation

Email: brack@physiol.ru
MD, research scientist of the Laboratory of Psychophysiology of State Research Institute of Physiology and Fundamental Medicine under the Siberian Branch of the Russian Academy of Medical Sciences. Address: 4, Timakov Street, Novosibirsk, RF, 630117, tel.: +7 (383) 335-98-55 Russian Federation

V. V. Korenek

Scientific Research Institute of Physiology and Basic Medicine under the Siberian Branch of RAMS, Novosibirsk, Russian Federation

Email: korenek@physiol.ru
research scientist of the Laboratory of Psychophysiology of State Research Institute of Physiology and Fundamental Medicine under the Siberian Branch of the Russian Academy of Medical Sciences. Address: 4, Timakov Street, Novosibirsk, RF, 630117, tel.: +7 (383) 335-98-55 Russian Federation

References

  1. Sudakov K.V. Mechanisms of resistance to emotional stress: benefits an individual approach. Vestn. RAMN – Annals of the Russian Academy of Medical Sciences. 1998; 8: 8–12.
  2. Jennings J.R, Zanstra Y. Is the brain the essential in hypertension? NeuroImage. 2009; 47: 914–921.
  3. Jennings J.R., Heim A.F. From brain to behavior: hypertension's modulation of cognition and affect. Int. J. Hypertens. 2012; 70: 1385.
  4. Lane R.D., Waldstein S.R., Chesney M.A., Jennings J.R., Lovallo W.R., Kozel P.J., Rose R.M., Drossman D.A., Schneiderman N., Thayer J.F., Cameron O.G. The rebirth of neuroscience in psychosomatic medicine, part I: historical context, methods and relevant basic science. Psychosom. Med. 2009; 71: 117–134.
  5. Lane R.D., Waldstein S.R., Critchley H.D., Derbyshire S.W., Drossman D.A., Wager T.D., Schneiderman N., Chesney M.A., Jennings J.R., Lovallo W.R., Rose R.M., Thayer J.F., Cameron O.G. The rebirth of neuroscience in psychosomatic medicine, part II: clinical applications and implications for research. Psychosom. Med. 2009; 71:135–151.
  6. Lovallo W.R. Do low levels of stress reactivity signal poor states of health? Biol. Psychol. 2011; 86 (2): 121–128.
  7. McEwen B.S., Gianaros P.J. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann. N.Y. Acad. Sci. 2010; 1186: 190–222.
  8. Lang P.J., Bradley M.M. Emotion and the motivational brain. Biol. Psychol. 2010; 84 (3): 437–450.
  9. Thayer J.F., Ahs F., Fredrikson M., Sollers J.J., Wager T.D. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012; 36 (20): 747–756.
  10. Bradley M.M., Keil A., Lang P.J. Orienting and emotional perception: facilitation, attenuation, and interference. Front. Psychol. 2012. 3: 493.
  11. Cacioppo J.T., Gardner W.L. Emotion. Ann. Rev. Psychol. 1999; 50:191–214.
  12. Sokolov E.N., Nezlina N.I., Polyanskii V.B., Evtikhin D.V. Orienting reflex "reaction of sight" and "spotlight of attention". Zhurn. vyssh. nervn. deyat = Journal of Higher Neural Activity. 2001; 51(4): 421–437.
  13. Watters A.J., Williams L.M. Negative biases and risk for depression; integrating self-report and emotion task markers. Depress Anxiety. 2011; 28 (8): 703–718.
  14. Aftanas L.I., Savotina L.N., Makhnev V.P., Reva N.V. Ross. fiziol. zhurnal im. I.M. Sechenova = I.M. Sechenov Russian physiological journal. 2004; 90(11): 1314–1323.
  15. Ferrari V., Codispoti M., Cardinale R., Bradley M.M. Directed and motivated attention during processing of natural scenes. J. Cogn. Neurosci. 2008; 20 (10): 1753–1761.
  16. Hajcak G., Dunning J.P., Foti D. Motivated and controlled attention to emotion: time-course of the late positive potential. Clin. Neurophysiol. 2009; 120 (3): 505–510.
  17. MacLeod C., Rutherford E., Campbell L., Ebsworthy G., Holker L. Selective attention and emotional vulnerability: assessing the causal basis of their association through the experimental manipulation of attentional bias. J. Abnorm. Psychol. 2002; 111(1): 107–123.
  18. Mogg K., Holmes A., Garner M., Bradley B.P. Effects of threat cues on attentional shifting, disengagement and response slowing in anxious individuals. Behav. Res. Ther. 2008; 46 (5): 656–667.
  19. Vythilingam M., Blair K.S., McCaffrey D., Scaramozza M., Jones M., Nakic M., Mondillo K., Hadd K., Bonne O., Mitchell D.G., Pine D.S., Charney D.S., Blair R.J. Biased emotional attention in post-traumatic stress disorder: a help as well as a hindrance? Psychol. Med. 2007; 37 (10): 1445–1455.
  20. Suslow T., Junghanns K., Arolt V. Detection of facial expressions of emotions in depression. Percept. Mot. Skills. 2001; 92 (3 Pt. 1): 857–868.
  21. Kostandov E.A. Psikhofiziologiya soznaniya i bessoznatel'nogo [Psychophysiology of the Conscious and the Subconscious]. St. Petersburg, Piter, 2004. 176 p.
  22. Williams L.M., Liddell B. J., Rathjen J., Brown K.J., Gray J., Phillips M., Young A., Gordon E. Mapping the time course of nonconscious and conscious perception of fear: an integration of central and peripheral measures. Human Brain Mapping. 2004; 21: 64–74.
  23. Liddell B.J., Brown K.J., Kemp A.H., Barton M.J., Das P., Peduto A., Gordon E., Williams L.M. A direct brainstem–amygdala–cortical alarm system for subliminal signals of fear. Neuroimage. 2005; 24: 235–243.
  24. Brooks S.J., Savov V., Allzén E., Benedict C., Fredriksson R., Schiöth H.B. Exposure to subliminal arousing stimuli induces robust activation in the amygdala, hippocampus, anterior cingulate, insular cortex and primary visualcortex: a systematic meta-analysis of fMRI studies. Neuroimage. 2012; 59 (3): 2962–2973.
  25. Guidelines Committee. 2003 European Society of Hypertension - European Society of Cardiology guidelines for the management of arterial hypertension. J. of Hypertension. 2003; 21: 1011–1053.
  26. Khanin Yu.L. Cross-cultural perspectives diagnosis of individual differences: methodological and conceptual problems. Vopr. psikhologii = Issues of psycology. 1989; 4: 118.
  27. Beck A.T., Clark D.A. Anxiety and depression: an information processing perspective. Anx. Res. 1988; 1: 23–36.
  28. Spielberger C.D., Jacobs G., Russel S., Crane S.T. Assessment of anger: The State-Trait Anger Scale. In: Advances in personality assessment. S.N. Butcher & C.D. Spielberger (eds.). Hillsdale, NJ: Erlbaum. 1983. P. 161–189.
  29. Carver C.S., White T.L. Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales. J. Pers. Soc. Psychol. 1994; 67: 319–333.
  30. Gilinskii M.A., Latysheva T.V., Semenova L.P. Klin. lab. diagnostika – Clinical laboratory diagnosis. 2007; 6: 25–28.
  31. van Honk J., Tuiten A., de Haan E., van den Hout M., Stam H. Attentional biases for angry faces: Relationships to trait anger and anxiety. Cogn. Emot. 2001; 15: 279–299.
  32. Ekman P., Friesen W. Pictures of facial affect. Palo Alto, CA: Consulting Psychologists Press. 1976.
  33. MacBrain. Face stimulus set. Available at: http:/www.macbrain.org
  34. Sgoutas-Emch S.A., Cacioppo J.T., Uchino B.N., Malarkey W., Pearl D., Kiecolt-Glaser J.K., Glaser R. The effects of an acute psychological stressor on cardiovascular, endocrine, and cellular immune response: A prospective study of individuals high and low in heart rate reactivity. Psychophysiology. 1994; 31: 264–271.
  35. Crawford H.J., Clarke S.W., Kitner-Triolo M. Self-generated happy and sad emotions in low and highly hypnotizable persons during waking and hypnosis: laterality and regional EEG activity differences. Int. J. Psychophysiol. 1996; 24 (3): 239–266.
  36. Pessoa L. To what extent are emotional visual stimuli processed without attention and awareness? Curr. Opin. Neurobiol. 2005; 15 (2): 188–196.
  37. LeDoux J.E. The emotional brain. N.Y.: Simon & Schuster. 1996. 373 p.
  38. Trimmer P.C., Houston A.I., Marshall J.A., Bogacz R., Paul E.S., Mendl M.T., McNamara J.M. Mammalian choices: combining fast-but-inaccurate and slow-but-accurate decision-making systems. Proc. Biol. Sci. 2008; 275 (1649): 2353–2361.
  39. Vuilleumier P., Armony J. L., Driver J., Dolan R. J. Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci. 2003; 6: 624–631.
  40. Carretie´ L., Hinojosa J.A., Lo´pez-Martı´n S., Tapia M. An electrophysiological study on the interaction between emotional content and spatial frequency of visual stimuli. Neuropsychologica. 2007; 45: 1187–1195.
  41. Neumann S.A., Waldstein S.R., Sellers J.J., Thayer J.F., Sorkin, J.D. Hostility and distraction have differential influences on cardiovascular recovery from anger recall in women. Health Psvchology. 2004; 23 (6): 631–640.
  42. Shapiro D., Jamner L.D., Goldstein I.B. Daily mood states and ambulatory blood pressure. Psychophysiology. 2007; 34: 399–405.
  43. Koster E.H., Crombez G., Verschuere B., van Damme S., Wiersema J.R. Components of attentional bias to threat in high trait anxiety: Facilitated engagement, impaired disengagement, and attentional avoidance. Behav. Res. Ther. 2006; 44 (12): 1757–1771.
  44. Posner M.I., Rothbart M.K. Research on attention networks as a model for the integration of psychological science. Ann. Rev. Psychol. 2007; 58: 1–23.
  45. van Hooff J.C., Dietz K.C., Sharma D., Bowman H. Neural correlates of intrusion of emotion words in a modified Stroop task. Int. J. Psychophysiol. 2008; 67 (1): 23–34.
  46. Salemink E., van den Hout M.A., Kindt M. Selective attention and threat: quick orienting versus slow disengagement and two versions of the dot probe task. Behav. Res. Ther. 2007; 45 (3): 607–615.
  47. Brenner B., Harney J.T., Ahmed B.A., Jeffus B.C., Unal R., Mehta J.L., Kilic F. Plasma serotonin levels and the platelet serotonin transporter. J. Neurochem. 2007; 102 (1): 206–215.
  48. Watts S.W. 5-HT in systemic hypertension: foe, friend or fantasy? Clin. Sci. 2005; 108: 399–412.
  49. Bianchi M., Moser C., Lazzarini C., Vecchiato E., Crespi F. Forced swimming test and fluoxetine treatment: in vivo evidence that peripheral 5-HT in rat platelet-rich plasma mirrors cerebral extracellular 5-HT levels, whilst 5-HT in isolated platelets mirrors neuronal 5-HT changes. Exp. Brain Res. 2002; 143: 191–197.
  50. Yubero-Lahoz S., Robledo P., Farré M., de laTorre R. Platelet SERT as a peripheral biomarker of serotonergic neurotransmission in the central nervous system. Curr. Med. Chem. 2013; 20 (11): 1382-–1396.
  51. Williams R.B. Neurobiology, cellular and molecular biology, and psychosomatic medicine. Psychosom. Med. 1994; 56: 308–315.
  52. Williams R.B., Marchuk D.A., Siegler I.C., Barefoot J.C., Helms M.J., Brummett B.H., Surwit R.S., Lane J.D., Kuhn C.M., Gadde K.M., Ashley-Koch A., Svenson I..K., Schanberg S.M. Childhood socioeconomic status and serotonin transporter gene polymorphism enhance cardiovascular reactivity to mental stress. Psychosom. Med. 2008; 70 (1): 32–39.
  53. Muldoon M.F., Mackey R.H., Sutton-Tyrrell K., Flory J.D., Pollock B.G., Manuck S.B. Lower central serotonergic responsivity is associated with preclinical carotid artery atherosclerosis. Stroke. 2007; 38: 2228–2233.
  54. Ramage A.G. Central cardiovascular regulation and 5-hydroxytryptamine receptors. Brain. Res. Bull. 2001; 56 (5): 42–-439.
  55. Lehnert H., Lombardi F., Raeder E.A., Lorenzo A.V., Verrier R.L., Lown B., Wurtman R.J. Increased release of brain serotonin reduces vulnerability to ventricular fibrillation in the cat. J. Cardiovasc. Pharmacol. 1987; 10: 389–397.
  56. Orer H.S., Clement M.E., Barman S.M., Zhong S., Gegger G.L., McCall R.B. Role of serotonergic neurons in the maintenance of the 10-Hz rhythm in sympathetic nerve discharge. Am. J. Physiol. 1996; 270 (39): 174–181.
  57. Kemp A.H., Gray M.A., Silberstein R.B., Armstrong S.M., Nathan P.J. Augmentation of serotonin enhances pleasant and suppresses unpleasant cortical electrophysiological responses to visual emotional stimuli in humans. Neuroimage. 2004; 22 (3): 1084–1096.
  58. Kemp A.H., Nathan P.J. Acute augmentation of serotonin suppresses cardiovascular responses to emotional valence. Int. J. Neuropsychopharmacol. 2004; 7 (1): 65–70.
  59. Shores M.M., Pasculaly M., Lewis N.L., Flatness D., Veith R.C. Short-term sertraline treatment suppresses sympathetic nervous system activity in healthy human subjects. Psychoneuroendocrinol. 2001; 26: 433–439.
  60. Sauer W.H., Berlin J.A., Kimmel S.E. Selective serotonin reuptake inhibitors and myocardial infarction. Circulation. 2001; 104: 1894–1898.
  61. Davies S.J., Hood S.D., Argyropoulos S.V., Morris K., Bell C., Witchel H.J., Jackson P.R., Nutt D.J., Potokar J.P. Depleting serotonin enhances both cardiovascular and psychological stress reactivity in recovered patients with anxiety disorders. J. Clin. Psychopharmacol. 2006; 26: 414–418.
  62. Barry R.J., Clarke A.R., Johnstone S.J., Magee C.A., Rushby J.A. EEG differences between eyes-closed and eyes-open resting conditions. Clin. Neurophysiol. 2007; 18 (12): 2765–2673.
  63. Knyazev G.G. EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neur. Biobehav. Rev. 2012; 36 (1): 677–695.
  64. Putman P., Hermans E., van Honk J. Emotional stroop performance for masked angry faces: it’s BAS, not BIS. Emotion. 2004; 4 (3): 305–311.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 1970 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies