О.Ю. Олисова¹, Дж.Р. Амшинская¹, В.В. Демкин²

¹Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет), Москва, Российская Федерация ²Институт молекулярной генетики Национального исследовательского центра «Курчатовский институт», Москва. Российская Фелерация

Микро-РНК в диагностике Т-клеточных лимфом кожи

Обоснование. Ранняя диагностика грибовидного микоза (ГМ) как наиболее часто встречающейся формы Т-клеточной лимфомы представляет большие трудности. Диагностика ГМ осуществляется на основании следующих критериев: комплексной оценки клинической картины заболевания, гистологического и иммуногистохимического исследования кожи и определения реаранжировки гена Т-клеточного рецептора, но даже это далеко не всегда помогает в постановке диагноза. Цель исследования — изучить экспрессию микро-РНК (тiR-223, -423, -663, -16, -326, -711) в плазме крови и лейкоцитах у больных с предположительным диагнозом ГМ для совершенствования диагностики заболевания. Методы. В данное исследование было включено 50 пациентов в возрасте от 24 до 79 лет, из них 30 пациентов — с предварительным диагнозом ГМ и 20 пациентов с мелкобляшечным парапсориазом, которые составили группу сравнения. Всем пациентам провели гистологическое, иммуногистохимическое исследование биоптатов кожи и определение экспрессии микро-РНК (тiR-223, -423, -663, -16, -326, -711) в плазме крови и лейкоцитах методом ПЦР в режиме реального времени. Результаты. Анализируя результаты проведенного клинико-анамнестического, гистологического и иммуногистохимического методов исследования, диагноз ГМ был установлен у 22 (73,3%) из 30 пациентов, из них у 9 (64,3%) из 14 — на ранней стадии заболевания мелкобляшечным парапсориазом. Заключение. В ходе проведенного нами исследования удалось установить, что изучаемые микро-РНК (тiR-326, -663, -711, -223, -423, -16) в плазме крови и лейкоцитах больных ГМ имеют статистически значимые уровни экспрессии по сравнению с низким уровнем экспрессии этих микро-РНК у больных мелкобляшечным парапсориазом. Экспрессия изучаемых нами микро-РНК в коже способствует совершенствованию диагностики ГМ с точностью до 90%.

Ключевые слова: грибовидный микоз, мелкобляшечный парапсориаз, микро-РНК

Для цитирования: Олисова О.Ю., Амшинская Дж.Р., Демкин В.В. Микро-РНК в диагностике Т-клеточных лимфом кожи. *Вестник РАМН*. 2023;78(6):530—540. doi: https://doi.org/10.15690/vramn11612

Обоснование

Диагностика грибовидного микоза (ГМ) осуществляется в соответствии с рекомендациями Международного общества по лимфомам кожи (ISCL), а также Европейской организации по изучению и лечению рака (EORTC), которые были разработаны для ГМ и синдрома Сезари.

Диагноз «Т-клеточная лимфома кожи» (ТКЛК) устанавливается на основании следующих критериев:

- комплексная оценка клинической картины заболевания:
- гистологическое исследование кожи с применением иммуногистохимических методов;
- определение реаранжировки гена Т-клеточного рецептора.

O.Yu. Olisova¹, J.R. Amshinskaya¹, V.V. Demkin²

¹I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation ²Institute of Molecular Genetics of the National Research Center "Kurchatov Institute", Moscow, Russian Federation

Micro-RNAs in the Diagnosis of Cutaneous T-Cell Lymphomas

Rationale. Early diagnosis of mycosis fungoides (MF), as the most common form of T-cell lymphoma, presents significant challenges. The diagnosis of MF is based on the following criteria: comprehensive assessment of the clinical picture of the disease, histological and immunohistochemical examination of the skin, and determination of rearrangement of the T-cell receptor gene, but even this does not always aid in diagnosis. The aim of the study is to investigate the expression of micro-RNAs (miR-223, -423, -663, -16, -326, -711) in the blood plasma and leukocytes of patients with a presumptive diagnosis of MF to improve the disease diagnosis. Methods. This study included 50 patients aged 24 to 79 years, of whom 30 patients had a preliminary diagnosis of MF and 20 patients with small plaque parapsoriasis, who formed the comparison group. All patients underwent histological, immunohistochemical examination of skin biopsies, and determination of micro-RNA (miR-223, -423, -663, -16, -326, -711) expression in blood plasma and leukocytes by real-time PCR. Results. Analyzing the results of clinical-anamnestic, histological, and immunohistochemical research methods, the diagnosis of MF was established in 22 of 30 (73.3%) patients, of which 9 of 14 (64.3%) were in the early stages of the disease. small plaque parapsoriasis. Conclusion. During our study, it was found that the studied micro-RNAs (miR-326, -663, -711, -223, -423, -16) in the blood plasma and leukocytes of patients with MF have statistically significant levels of expression compared to the low level of expression of these micro-RNAs in patients with small plaque parapsoriasis. The expression of micro-RNAs we studied in the skin contributes to the improvement of MF diagnosis with an accuracy of up to 90%.

Keywords: mycosis fungoides, small plaque parapsoriasis, micro-RNAs

For citation: Olisova OYu, Amshinskaya JR, Demkin VV. Micro-RNAs in the Diagnosis of Cutaneous T-Cell Lymphomas. Annals of the Russian Academy of Medical Sciences. 2023;78(6):530–540. doi: https://doi.org/10.15690/vramn11612

В качестве среднего срока, необходимого для установления диагноза у всех больных ГМ, включая его классическую форму, был определен период в 5 лет, который может быть существенно увеличен при альтернативных вариантах течения заболевания [1].

При дебюте ГМ диагностика затруднена. Это обусловлено клиническим сходством ГМ с воспалительными дерматозами, такими как экзема, псориаз, атопический дерматит, красный отрубевидный лишай Девержи, бляшечный парапсориаз и др. На пятнистой стадии ГМ диагностика показывает наименьшую информативность. Процент достоверности диагноза ГМ, который был подтвержден только клиническими, гистологическими и иммуногистохимическими методами исследования, не превышает 50-75%. Установление диагноза ГМ молекулярно-биологическим методом (с помощью ПЦР-исследования, в ходе которого идентифицируется реаранжировка гена Т-клеточного рецептора) на ранних стадиях (I–IIA) оценивается вероятностью ~50%, а на поздних стадиях (IIB-IV) эта вероятность составляет уже 90%. Отсюда следует, что для ранней диагностики ГМ в настоящее время не существует надежных, более информативных или специфичных генетических маркеров [1, 2].

В последнее десятилетие резко увеличился рост заболеваний, связанных с изменениями в модификациях РНК. Инновационные методы, используемые для обнаружения паттернов молекулярной модификации, могут привести к улучшению диагностики и появлению новых средств для лечения различных заболеваний [3].

Микро-РНК (miR) представляют собой большую группу коротких, некодирующих молекул РНК, которые имеют длину около 22 нт и участвуют в посттранскрипционном контроле экспрессии генов [4]. Их действие завершается спариванием оснований с транскриптами матричной РНК (мРНК), которые охватывают целевые последовательности, что приводит к увеличению распада мРНК и/или трансляционного затухания [5]. Благодаря этому действию мРНК участвуют во многих физиологических процессах, и любые дерегуляции на этом уровне вызовут аномалии и дальнейшие заболевания человека [4]. Участие микро-РНК в патологических процессах позволило признать их потенциальными терапевтическими мишенями, а также будущими био-

маркерами с диагностическим и/или прогностическим потенциалом [4, 6].

Материалы и методы

Лизайн исследования

Проведено одномоментное, сравнительное, нерандомизированное исследование.

Условия проведения

Исследование было проведено на базах Первого МГМУ им. И.М. Сеченова, а также ФГБУ «Институт молекулярной генетики» Национального исследовательского центра «Курчатовский институт».

Критерии соответствия

В данное исследование было включено 50 пациентов в возрасте от 24 до 79 лет, из них 30 пациентов были с предварительным диагнозом ГМ (пятнистая стадия — у 13 (43,3%), бляшечная — у 11 (36,7%), опухолевая — у 6 (20%) больных (основная группа)) и 20 пациентов с диагнозом «мелкобляшечный парапсориаз», составившие группу сравнения.

Описание медицинского вмешательства

Всем 50 больным для установления диагноза помимо клинического осмотра были проведены гистологические и иммуногистохимические исследования биоптатов кожи, взятых из очагов поражения. Исследование проводилось на базе Института клинической морфологии и цифровой патологии Сеченовского Университета, а также ФГБУ НМИЦ гематологии.

Всем 30 пациентам основной группы и 20 пациентам группы сравнения проводилось определение микро-РНК (miR-326, -663b, -711, -223) в плазме крови и лейкоцитах до начала лечения пациентов (табл. 1, 2).

Методы регистрации исходов

Исследование проводилось методом ПЦР в режиме реального времени на приборе BioRadCFX 96 (Bio-Rad Laboratories, США).

Характеристика: ПЦР-микс содержит ПЦР-буфер (10 мМТгіsHCLpH 8,3; 8% сахарозы; 50 mM КСl; 0,5%

Таблица 1. Количественное описание микро-РНК в группе больных грибовидным микозом (30 человек)

Понторожения	Размах варьирования		Charres M (050/ × 111)	Стандартное	Медиана, <i>Ме</i>	Коэффициент
Показатель	Min	Max	Среднее, <i>М</i> (95%-й ДИ)	отклонение, <i>SD</i>	(95%-й ДИ)	вариации, CV, %
mir-223L	18,905	24,900	21,849 (21,397–22,304)	1,279	22,153 (21,225–22,245)	5,9
mir-423L	21,865	27,910	24,131 (23,669–24,604)	1,352	24,193 (23,540-24,910)	5,6
mir-663L	20,860	32,155	23,770 (22,979–24,621)	2,354	22,999 (22,527–23,950)	9,9
mir-16L	11,150	16,015	13,131 (12,714–13,548)	1,186	12,633 (12,410-13,571)	9,0
mir-326L	26,259	32,665	28,502 (27,971–29,037)	1,527	28,123 (27,515–29,060)	5,4
mir-711L	30,210	35,360	31,736 (31,314–32,178)	1,265	31,555 (31,160-32,250)	4,0
mir-223P	25,390	31,540	27,808 (27,216–28,394)	1,694	27,315 (26,875–28,370)	6,1
mir-423P	23,215	33,635	27,714 (26,650–28,850)	3,131	27,005 (26,265–29,113)	11,3
mir-663P	24,060	34,420	31,586 (30,710-32,392)	2,381	32,296 (31,104–33,004)	7,5
mir-16P	14,540	22,330	17,245 (16,497–18,032)	2,192	16,270 (16,048–17,373)	12,7
mir-326P	29,257	32,935	31,222 (30,847–31,591)	1,063	31,210 (30,538–32,035)	3,4
mir-711P	33,065	37,850	35,280 (34,831–35,716)	1,267	35,413 (34,945–35,920)	3,6

Таолица 2. Количест

532

Таблица 2. Количественное описание микро-РНК в группе сравнения (20 человек)

Поновожни	Размах варьирования		Среднее, <i>М</i> (95%-й ДИ)	Стандартное	Медиана, Ме	Коэффициент
Показатель	Min	Max	Среднее, 11 (95%-и ДИ)	отклонение, <i>SD</i>	(95%-й ДИ)	вариации, <i>CV</i> , %
mir-223L	19,170	27,632	21,056 (20,103-22,124)	2,389	20,234 (19,950–21,000)	11,3
mir-423L	19,250	21,670	20,857 (20,616–21,104)	0,577	20,859 (20,678–21,220)	2,8
mir-663L	20,935	28,390	22,150 (21,538–22,850)	1,650	21,634 (21,307–22,413)	7,4
mir-16L	10,173	11,740	10,991 (10,765–11,199)	0,510	11,120 (10,740–11,353)	4,6
mir-326L	26,418	30,810	27,931 (27,413–28,487)	1,258	27,520 (27,220–28,560)	4,5
mir-711L	30,300	33,241	31,678 (31,372–31,977)	0,705	31,683 (31,350-31,980)	2,2
mir-223P	22,430	26,075	24,395 (23,899–24,863)	1,113	24,538 (23,537–25,265)	4,6
mir-423P	24,220	27,040	25,451 (25,035–25,870)	0,970	25,310 (24,785–26,260)	3,8
mir-663P	24,900	31,877	29,059 (28,348–29,748)	1,656	29,281 (28,261-29,931)	5,7
mir-16P	12,075	15,825	14,341 (13,935–14,743)	0,954	14,313 (14,045–15,062)	6,7
mir-326P	32,085	34,945	33,690 (33,306–34,059)	0,866	33,795 (33,370–34,240)	2,6
mir-711P	30,223	32,755	31,168 (30,881-31,481)	0,707	31,085 (30,708–31,663)	2,3

Тween 20; 3% формамид; 4 mM MgCl2 и 180 μM каждого из dNTP), а также олигонуклеотиды, меченый по Hex зонд и одну единицу Таq ДНК полимеразы (и образец кДНК). Концентрация в реакционной смеси праймеров и зонда — по 0,17 мкМ.

С помощью технологии ПЦР был проведен анализ циркулирующих микро-РНК (miR-326, -663, -711, -223, -423, -16) в плазме крови и лейкоцитах, что требует использования микропланшетов, в которых каждая лунка содержит специфические праймеры, разработанные в ООО «НАНОДИАГНОСТИКА».

При детекции микро-РНК применяли метод, основанный на использовании специфического праймера типа «стебель—петля», который осуществляет обратную транскрипцию микро-РНК, при этом удлиняет кДНК мишени. Образованная кДНК затем амплифицируется обычными праймерами в присутствии универсального зонда, меченого флуорофором. При амплификации мишени универсальный зонд гидролизуется с отщеплением флуорофора, что ведет к увеличению детектируемой флуоресценции примерно в 100 раз.

Количественная оценка микро-РНК определяется циклом реакции, при котором значение флуоресценции превосходит пороговый уровень. Таким образом, для разных проб можно получить относительную количественную оценку определенной микро-РНК.

Во всех постановках каждый образец ставился в двух точках. Для расчетов бралось среднее значение показаний прибора для этих двух точек.

Этическая экспертиза

Исследование одобрено в рамках диссертационной работы «Диагностическая значимость микро-РНК при Т-клеточных лимфомах кожи и разработка комбинированного метода лечения», заседание локального комитета по этике ФГАОУ ВО «Первый МГМУ имени И.М. Сеченова» Минздрава России (Сеченовский Университет) № 16-19 от 10.12.2019. При включении в исследование каждый пациент подписывал информированное согласие на участие в нем.

Статистический анализ

Статистический анализ данных был проведен посредством программ Statistica 10, GraphPad Prism 6. Предвари-

тельный расчет выборки не проводился. Использовались описательные методы статистики.

Результаты

В рамках обследования с диагностической целью всем пациентам с ΓM проводилось гистологическое и иммуногистохимическое исследование. В табл. 3 представлены частота встречаемости и характер основных изменений у пациентов с ΓM и группой сравнения (мелкобляшечный парапсориаз).

На основании проведенного исследования были выявлены статистически значимые гистологические отличия ΓM , к которым относились:

- 1) паракератоз, p = 0.025;
- 2) лимфоидный инфильтрат, p = 0.012;
- 3) диспропорциональный эпидермотропизм, p = 0.037;
- 4) наличие телец Сиватта (округлые гомогенные эозинофильные образования), p = 0.035;
 - 5) периваскулярные инфильтраты, p = 0.013.

Стоит отметить, что гистологическая картина была сомнительной практически у половины пациентов — у 15 (48%) больных с ГМ, из них — у 8 больных пятнистой и у 4 — бляшечной стадиями ГМ, а также подозрительной — у 7 (36.8%) из группы контроля.

При анализе иммуногистохимической картины всего при ГМ у 13 пациентов отмечалась экспрессия маркера цитотоксических Т-лимфоцитов CD8+, что составляет 42% случая. В то время как в группе контроля экспрессия маркера цитотоксических Т-лимфоцитов CD8+ выявлена у подавляющего большинства пациентов — 17 (89%) больных. При попарном сравнении методом Краскела—Уоллиса выраженности экспрессии маркера цитотоксических Т-лимфоцитов CD8+ между группами были выявлены статистически значимые отличия между группой пациентов с пятнистой стадией и группой контроля (p < 0.001).

У 23 пациентов с ГМ в эпидермисе и дерме определялась выраженная экспрессия маркера Т-хелперов СD4 (при пятнистой стадии ГМ — у 5 пациентов, при бляшечной — у 11, при опухолевой — у 6); у 8 пациентов с ГМ — умеренно выраженная экспрессия маркера Т-клеток

Габлица 3. Основные гистологические и иммуногистохимические характеристики пациентов и контрольной группы

Annals of the Russian Academy of Medical Sciences. 2023;78(6):530-540.

ORIGINAL STUDY

Коэффициент V Крамера -0,140,12 0,23 0,18 0,46 0,07 0,35 0,63 0,27 0,26 0,42 0,02 0,02 0,13 0,07 I 2,4 (0,3-31,8) Отношение 0,6 7,0 368,2 $_{0.5}$ 2,2 $_{9.0}$ $_{0,2}$ 0,8 $_{2,8}$ 1,1 5,1 27,9 (есть/нет) $_{0,4}$ $_{1,6}$ $_{6,1}$ 9,01 0.5 1,7 6,3 0,3 0,9 3,4 0,4 1,3 4,7 11,4 1897 4,2 шансов 1,6 7 46 0,3 1,1 4 $_{0,7}$ 2,6 $_{1}$ 4,7 40 lb $_{0,8}$ 2,9 $_{1}$ 2,5 ı р-значение точного критерия Фишера двустороннее 1,000 0,553 0,393 0,228 0,774 1,000 0,774 1,000 0,085 0,004 0,377 0,1430,131 1,14 0,001 0,021 группы, % (95%-й ДИ) Доля в численности 55,0 (33,8-74,9) 50,0 (29,3-70,7) 60,0 (38,4-78,9) 50,0 (29,3-70,7) 45,0 (25,1-66,2) 55,0 (33,8-74,9) 50,0 (29,3-70,7) 50,0 (29,3-70,7) 50,0 (29,3-70,7) 55,0 (33,8-74,9) 60,0 (38,4-78,9) 80,0 (59,2-92,8) 65,0 (43,2-82,8) 35.0 (17.2-56.8) 60,0 (38,4-78,9) 85,0 (65,1-95,6) 85,0 (65,1-95,6) 100,0 (83,2-100)45,0 (25,1 66,2) 45,0 (25,1-66,2) 40,0 (21,1 61,6) 50,0 (29,3-70,7) 55,0 (33,8-74,9) 45,0 (25,1 66,2) 100,0 (83,2-100)40,0 (21,1-61,6) 20,0 (7,2-40,8) 40,0 (21,1-61,6) 15,0 (4,4-34,9) 0.0 (0.0 - 16.8)15,0 (4,4-4,9) 0,0 (0-16,8)Группа 2 (95%-й ДИ) 20 (14-27) 17 (11-24)9 (5–15) 10(5-16)12 (7-19) 10(5-16)10(5-16)20 (14-27) 10 (5-16) 10(5-16)16(10-23)13 (8-20) 17(11-24)11 (6-17) 11 (6-17) 10(5-16)11(6-17)11 (6-17) 12 (7-19) 12(7-19)9 (5-15) 8(4-14)9 (5-15) 9 (5-15) 8(4-14)7(3-13)3(1-8)3(1-8)0(0-3)8(4-14)4(1-9)0(0-3)группы, % (95%-й ДИ) Доля в численности 63,3 (45,5-78,7) 43,3 (26,9-61,0) 43,3 (26,9-61,0) 66,7 (48,9-81,4) 36,7 (21,3–54,5) 76,7 (59,6–88,9) 56,7 (39,0-73,1) 43,3 (26,9-61,0) 40,0 (24,0-57,8) 56,7 (39,0-73,1) 96,7 (85,5-99,6) 93,3 (80,3-98,6) (00,0) (88,4-100)33,3 (18,6–51,1) 23,3 (11,1-40,4) 76,7 (59,6–88,9 23,3 (11,1-40,4) 56,7 (39,0–73,1) 60,0 (42,2-76,0) 13,3 (4,7-28,7) 86,7 (71,3-95,3) 96,7 (85,5-99,6) 63,3 (45,5–78,7) 36.7 (21.3–54.5) 33,3 (18,6-51,1) 66,7 (48,9–81,4) 56,7 (39,0–73,1) 43,3 (26,9–61,0) 3,3 (0,4-14,5) 3,3 (0,4-14,5) 6,7 (1,4-19,7)0,0 (0-11,6)(95%-й ДИ) 23 (16-30) 23 (16-30) 28 (21-35) 30 (23-36) 20 (14-27) 19 (13-26) 17 (11-24)17 (11–24) 18 (12-25) 17 (11-24)26 (19 - 33)29 (22–35) 29 (22–35) 19 (13-26) 20 (14-27) 17 (11-24)10 (5-16) 10 (5-16) 11 (6-17) 13(8-20)13(8-20)12 (7-19) 13 (8-20) 11 (6-17) 13 (8-20) 7 (3–13) 7 (3–13) 2 (0-6) 4(1-9)1(0-4)1 (0-4) 0(0-3)**Уровень** признака Есть Есть Есть Есть Есть Есть Нет Нет Есть Нет Есть Нет Есть Есть Есть Есть Нет Есть Нет Есть Есть Есть Нет Атипичные лимфоциты с церебриформными Обильный поверхностный полосовидный Диспропорциональный эпидермотропизм Эпидермальные лимфоциты крупнее Периваскулярные инфильтраты ядрами (лимфоидная атипия) лимфоидный инфильтрат Микроабсцессы Потрие СD45RO эпидермис Эпидермотропизм СD8 эпидермис* СD3 эпидермис СD4 эпидермис СD5 эпидермис СD7 эпидермис Гельца Сиватта Паракератоз дермальных Акантоз

 Таблица 4. Результаты расчета вероятности соответствия нулевой гипотезе (группы 1 и 2)

	1	Статистичес	Статистические оценки с 95%-ми ДИ	IN J(M		
Показатель	Среднее/медианное* значение в группе	* значение в группе	Разность	Стандартизированный эффект	р-значение двустороннее перестановочное	Средние / медианные* значения в группах с 95%-м ДИ
	1, M ₁	2, M ₂	средних / медиан*	по мозну / опсериальный коэффициент корреляции*		
* - C - C - C - C - C - C - C - C - C -	21,849 (21,397–22,304)	21,056 (20,103–22,124)	0,794 (-0,19-2,013)	0,4 (-0,1-1,0)	0,138	18.53 E.S.23 E.S.
. 16221.	22,153 (21,225–22,245)	20,234 (19,950–21,000)	1,503	0,2 (0,2–1,4)	0,005	Per Arminostante CCCommunication of Communication of Comm
mir423L	24,131 (23,669–24,604)	20,857 (20,616–21,104)	3,274 (2,712—3,836)	3,2 (2,3–4,0)	0,0001	The 423L and 423L and 423L
	23,770 (22,979–24,621)	22,150 (21,538–22,850)	1,619 (0,509–2,724)	0,8 (0,2–1,4)	0,007	Jean-im group
1000	22,999 (22,527–23,950)	21,634 (21,307–22,413)	1,353 (0,620–2,160)	0,3 (0,2–0,8)	100'0	Off-uniquentian Cobbin sequency (1) as a sequency of the companion of the

Таблица 4. Продолжение

ORIGINAL STUDY

Средние / медианные* значения в группах с 95%-м ДИ group group group group group 14.0 -32.4 31.2 29.5 10.5 27.0 28 J11/71im 19 Min **П**іг223**Р** пизгег **п**іг423**Р** р-значение двустороннее перестановочное 0,0028 0,00010,166 0,0001 0,85 Стандартизированный эффект коэффициент корреляции* по Коэну / бисериальный 0.1 (-0.5-0.6)0,4 (-0,2-1,0)2,3 (1,6-3,1)2,3 (1,6-3,0)0.9 (0.3-1.5)Статистические оценки с 95%-ми ДИ средних / медиан* 0,058 (-0,504-0,621)(-0,257-1,399)3,413 (2,661–4,152) (1,646-2,592)(1,078-3,417)Разность 2,263 0,571 Среднее/медианное* значение в группе 25,451 (25,035–25,870) 24,395 (23,899–24,863) 31,678 (31,372–31,977) (10,765-11,199)(27,413–28,387) 10,991 27,931 $2, M_2$ (12,714-13,548)(27,216–28,394) (26,650 - 28,850)(27,971-29,037)(31,314-32,178)28,502 27,808 27,714 31,736 13,131 $1, M_1$ Показатель mir223P mir423P mir326L mir711L mir16L

535

Таблица 4. Окончание	нчание					
		Статистичес	Статистические оценки с 95%-ми	и ДИ		
Показатель	Среднее/медианное	Среднее/медианное* значение в группе	Разность средних / медиан*	Стандартизированный эффект по Коэну / бисериальный коэффициент корредящии*	р-значение двустороннее перестановочное	Средние / медианные* значения в группах с 95%-м ДИ
	31,586 (30,710-32,392)	29,059 (28,348-29,748)	2,526 (1,464-3,646)	1,2 (0,6-1,8)	0,0004	S debelin S
mir663 P *	32,296	29,281 (28,261-29,931)	2,884 (1,795-3,888)	0,4 (0,2-0,8)	0,0002	The contract Colours and Colou
*U.71::	17,245 (16,497-18,032)	14,341 (13,935-14,743)	2,905 (1,997-3,750)	1,6 (1,0-2,3)	0,0001	ago nim E
	16,270 (16,048-17,373)	14,313 (14,045-15,062)	2,217	0,8 (0,2-0,9)	0,0001	COMPARENCE STREET STREE
mir326 P	31,222 (30,847-31,591)	33,690 (33,306-34,059)	2,468 (1,953-3,006)	2,5 (1,7-3,2)	0,0001	498251im 1000 10000
mir711 P	35,280 (34,831-35,716)	31,168 (30,881-31,481)	4,112 (3,571-4,643)	3,8 (2,9-4,7)	0,0001	S dirivin

памяти CD45RO. Статистически значимых отличий с группой контроля выявлено не было. Экспрессия маркера Т-хелперов CD4 у пациентов из группы контроля отмечалась в 14 (73,7%) случаях.

У 20 пациентов с ГМ была отмечена положительная реакция на ранний маркер Т-лимфоцитов СD7: умеренно выраженная в дерме — у 12 пациентов, резко выраженная в эпидермисе — у 8 пациентов с ГМ.

У 8 пациентов из группы контроля с МБП (мелкобляшечный парапсориаз) определялась умеренно выраженная экспрессия CD45RO+: у 5 больных она была выявлена только в дерме, а у 3 пациентов — в эпидермисе и дерме.

Экспрессия маркера CD7 выявлена у 8 (42%) больных из группы контроля и у 20 (64,5%) пациентов из группы с ГМ, при МБП — во всех слоях кожи в Т-лимфоцитах, располагавшихся преимущественно в поверхностном полосовидном дермальном инфильтрате.

Положительная реакция на CD5+ отмечалась у 7 пациентов из группы контроля и у 11 - c ГМ.

У пациентов обеих групп экспрессия расценивалась как умеренно выраженная и определялась преимущественно в Т-лимфоцитах эпидермиса и слабо выраженная— в дерме.

Для совершенствования диагностики ГМ проводилось изучение микро-РНК-223, -423, -663, -16, -326, -711 в плазме крови и лейкоцитах пациентов с ГМ по сравнению с группой сравнения (табл. 4). Выявлены статистически значимые отклонения микро-РНК у пациентов с ГМ (см. табл. 4).

Пациенты с ГМ были подразделены на три подгруппы согласно клиническим стадиям заболевания: пятнистая — N=13 (43%); бляшечная — N=11 (36%); опухолевая — N=6 (20%), однако различий по экспрессии микро-РНК в выделенных группах установлено не было.

Учитывая выявление статистически значимых отличий микро-РНК в плазме и лейкоцитах у пациентов с ГМ по сравнению с группой сравнения, в нашем исследовании был проведен ROC-анализ взаимосвязи микро-РНК и ГМ, а также определены пороговые значения микро-РНК в точках с наибольшей чувствительностью и специфичностью, при которых прогнозировался высокий риск ГМ (табл. 5). Также определялась прогностическая значимость изменения массы тела в процентах по результатам ROC-анализа с указанием чувствительности (доли истинно положительных результатов) и специфичности (доли ложноотрицательных результатов) проводимого теста. Для микро-РНК была проведена качественная оценка эффекта различий по Коэну, далее для микро-РНК, которые показали умеренный, сильный и очень сильный эффект различий, был проведен ROC-анализ [26].

Площадь под ROC-кривой, соответствующей взаимосвязи miR-223 и ТКЛК, составила 0.795 ± 0.075 (95%-й ДИ: 0.647-0.942). Полученная модель оказалась статистически значимой (p=0.002). Пороговое значение miR-223 в точке отсечения составило 25,3. При miR-223, равном или превышающем данное значение, прогнозировался высокий риск ГМ. Чувствительность и специфичность метода составили соответственно 84,0 и 66,7% (рис. 1).

Площадь под ROC-кривой, соответствующей взаимосвязи ГМ и miR-16, составила $0,771\pm0,073$ (95%-й ДИ: 0,662-0,914). Полученная модель оказалась статистически значимой (p=0,005). Пороговое значение

miR-16 в точке cut-off составило 15,4. При miR-16, равном или превышающем данное значение, прогнозировался высокий риск ТКЛК. Чувствительность и специфичность метода составили соответственно 72,0 и 73,3% (рис. 2).

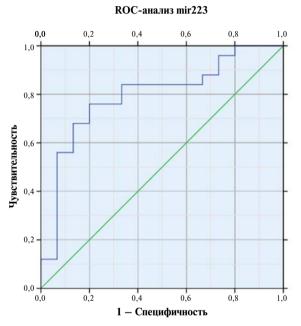
Пороговое значение miR-326 в точке cut-off составило 32,2. При miR-326 в плазме, равном или ниже данного значения, прогнозировался более высокий риск ранней стадии ГМ по сравнению со здоровыми пациентами. Чувствительность и специфичность метода составили соответственно 90,5 и 88,9%.

Площадь под ROC-кривой, соответствующей взаимосвязи ГМ и miR-711 в плазме, составила 0.894 ± 0.065 (95%-й ДИ: 0.767-0.918). Полученная модель оказалась статистически значимой (p=0.001). Пороговое значение miR-711 в точке отсечения составило 33.2. При miR-711 в плазме, равном или превышающем данное значение, прогнозировался более высокий риск ГМ по сравнению с пациентами с мелкобляшечным парапсориазом. Чувствительность и специфичность метода составили соответственно 81 и 100% (рис. 3).

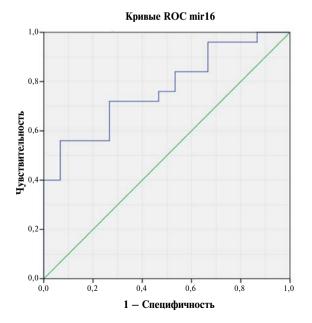
В нашем исследовании показано, что прогнозировался высокий риск развития ГМ по сравнению с группой пациентов с мелкобляшечным парапсориазом при следующих изменениях в плазме:

- miR-223, равном или превышающем 25,3;
- miR-16, равном или превышающем 15,4;
- miR-711, равном или превышающем 33,2;
- miR-326, равном или ниже 32,2.

Также прогнозировался высокий риск развития ГМ по сравнению с группой сравнения при таких изменениях в лейкоцитах, как:


- miR-16, равном или превышающем 11,6 (чувствительность 81,0%; специфичность 88,9%);
- miR-423, равном или превышающем 21,7 (чувствительность 71,4%; специфичность 88,9%).

Анализируя результаты проведенного клинико-анамнестического, гистологического и иммуногистохимического методов исследования, диагноз ГМ, согласно данным нашего исследования, был установлен у 22 (73,3%) из 30 пациентов, из них у 9 (64,3%) из 14 — на ранней стадии заболевания по классификации WHO—EORTC. Уровень экспрессии микро-РНК, превышающий пороговую величину точки отсечения, подтверждает диагноз ГМ у всех 30 пациентов. Так, микро-РНК-223, -423, -663, -16, -326, -711 в плазме крови и лейкоцитах у пациентов с ГМ существенно отличаются от аналогичных показателей группы сравнения.


Обсуждение

В недавнее время в качестве диагностически значимого признака при дифференциальной диагностике между доброкачественными и злокачественными дерматозами стали отмечать уровень экспрессии некоторых микро-РНК: микро-РНК-155, -21, -22. При ТКЛК в очагах поражения наблюдалась повышенная экспрессия микро-РНК-155. Также известно, что экспрессия микро-РНК-155 регулируется посредством активации сигнального пути STAT5. Ввиду того что микро-РНК-155 обладает проонкогенными свойствами, которые способны стимулировать процесс пролиферации опухолевых клеток, есть основания полагать, что она служит «мостом» между онкопролиферативными и доброкачественными воспалительными процессами [13, 14].

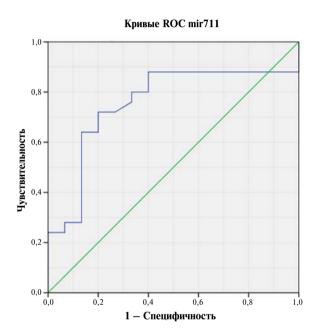

. , ,		, ,		
Тест	Оптимальная точка отсечения	Площадь под ROC-кривой, AUC с 95%-м ДИ	Статистическая значимость AUC, p	Общее качество классификации
mir423L	21,768	1,000 (1,000-1,000)	0	1
mir711P	32,910	1,000 (1,000-1,000)	0	1
mir16L	11,793	0,985 (0,915–1,000)	1,3 • 10-215	0,95
mir223P	25,778	0,977 (0,921-0,996)	5,2 • 10 ⁻²⁰¹	0,94
mir16P	15,395	0,960 (0,887-0,990)	1,2 • 10 ⁻⁸⁷	0,91
mir326P	32,948	0,963 (0,865-0,990)	2,2 • 10-88	0,92

Рис. 1. ROC-кривая, соответствующая взаимосвязи miR-223 и грибовидного микоза

Рис. 2. ROC-кривая, соответствующая взаимосвязи miR-16 и грибовидного микоза

Рис. 3. ROC-кривая, соответствующая взаимосвязи miR-711 и грибовидного микоза

Данные литературы свидетельствуют, что, несмотря на комплексный подход в диагностике ГМ, среднее время от появления симптомов до постановки диагноза составляет 3–4 года и может превышать четыре десятилетия, что влияет на дальнейший прогноз и течение заболевания. Таким образом, вопрос о ранней диагностике ГМ сохраняет свою актуальность [10, 15].

Целью нашего исследования является изучение микро-РНК в плазме крови и лейкоцитах у больных с предположительным диагнозом ГМ и больных мелкобляшечным парапсориазом в группе сравнения [16—18].

Исследования, посвященные анализу экспрессии микро-РНК в образцах от пациентов с ТКЛК, начались относительно недавно. Первые исследования строились по принципу широкопрофильного скринингового изыскания, т.е. когда оценке подвергается весь или очень широкий спектр известных на момент исследования микро-РНК. Такому подходу хорошо соответствуют технологии гибридизации на микрочипах, так как они позволяют оценивать сразу большие массивы микро-РНК и выявлять среди них мишени с дифференциальной экспрессией при различных формах КТЛК [12—14].

В пионерской работе, используя гибридизацию на микрочипах, проанализировали профиль микро-РНК

в СD4+ Т-клетках периферической крови у 21 пациента с синдромом Сезари. Показано, что он существенно отличается от такового в контрольной группе здоровых людей, а также у лиц с В-клеточными лимфомами [16]. Было идентифицировано 114 микро-РНК, ассоциированных с синдромом Сезари, из которых 10 демонстрировали повышенную экспрессию, а большинство — сниженную. Впоследствии аналогичные исследования были проведены с разными формами ТКЛК. В целом во всех работах были выявлены группы микро-РНК с повышенной (индуцированной) и пониженной (супрессированной) экспрессией по отношению к контрольным клеткам здоровых доноров либо больных другими формами заболевания [17, 18].

В нашей работе впервые проведено исследование микро-РНК в лейкоцитах и выделены микро-РНК в плазме и лейкоцитах, которые имеют высокую чувствительность и специфичность при диагностике ГМ по сравнению с группой сравнения.

Нами исследованы шесть микро-РНК в плазме крови и лейкоцитах, которые, по данным литературы, имели наибольшую информативность при ГМ. Такие микро-РНК, как miR-423 и miR-16 в лейкоцитах, miR-711, -223, -16, -326 в плазме крови, по результатам исследования показали приемлемые характеристики прогнозирования ГМ независимо от стадии заболевания.

В своем исследовании R. Mardani et al. продемонстрировали, что повышение микро-РНК-16 в коже может играть онкогенную роль, способствующую прогрессированию заболевания, и его повышение можно использовать в качестве возможного прогностического маркера, который поможет выявить пациентов, которые более склонны к прогрессированию заболевания [19, 20].

Функция микро-РНК-711 доподлинно не известна, однако в исследовании Q. Han, D. Liu показано,

что микро-РНК-711 может быть связана с возникновением сильного зуда у пациентов с ТКЛК [21, 22].

По данным литературы, функция таких микро-РНК, как -423, -16, -711, -223 и -326, при ГМ недостаточно понятна, однако экспрессия изучаемых нами микро-РНК в коже может помочь установить диагноз ГМ с точностью до 90% [23—25].

Выводы

Показан увеличенный уровень экспрессии микро-РНК-326, -663, -711, -223, -423, -16 в плазме крови и лейкоцитах больных ГМ по сравнению с экспрессией у больных мелкобляшечным парапсориазом. Экспрессия изучаемых нами микро-РНК в коже способствует совершенствованию диагностики ГМ с точностью до 90% и может быть рекомендована для использования в клинической практике врачей — дерматологов, гематологов и онкологов.

Дополнительная информация

Финансирование работы. Исследование осуществлялось за счет бюджетного финансирования по месту работы авторского коллектива.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов, связанного с публикацией настоящей статьи.

Участие авторов. О.Ю. Олисова — общее руководство; Д.Р. Амшинская — сбор и анализ данных; В.В. Демкин — лабораторная диагностика. Все авторы согласны нести ответственность за все аспекты работы, чтобы обеспечить надлежащее рассмотрение и решение всех возможных вопросов, связанных с корректностью и надежностью любой части работы.

ЛИТЕРАТУРА

- 1. Воронцова А.А., Карамова А.Э., Знаменская Л.Ф. Современные представления о патогенезе грибовидного микоза // Онкогематология. 2018. Т. 13. № 3. С. 39—46. [Vorontsova AA, Karamova EA, Znamenskaya LF. Modern concepts of the mycosis fungoides pathogenesis. Onkogematologiya = Oncohematology. 2018;13(3):39—46. (In Russ.)] doi: https://doi.org/10.17650/1818-8346-2018-13-3-39-46
- Hodak E, Amitay-Laish I. Mycosis fungoides: a great imitator. Clin Dermatol. 2019;37(3):255–267. doi: https://doi.org/10.1016/j.clindermatol.2019.01.004
- Жуков А.С., Белоусова И.Э., Самцов А.В. Иммунологические и молекулярно-генетические механизмы развития грибовидного микоза // Вестник дерматологии и венерологии. 2015. Т. 91. № 4. С. 42—50. [Zhukov AS, Belousova IE, Samtsov AV. Immunological and molecular genetic mechanisms of the development of mycosis fungoides. Vestnik Dermatologii i Venerologii. 2015;91(4):42—50. (In Russ.)]
- Quinodoz S, Guttman M. Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. *Trends Cell Biol*. 2014;24(11):651–663. doi: https://doi.org/10.1016/j.tcb.2014.08.009
- Campbell JJ, Clark R, Watanabe R, et al. Sezary syndrome andmycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. *Blood*. 2010;116(5):767–771. doi: https://doi.org/10.1182/blood-2009-11-251926
- Girardi M, Edelson RL. Cutaneous T-cell lymphoma: pathogenesis and treatment. Oncology (Williston Park). 2000;14(7):1061–1070.

- 7. Федеральные клинические рекомендации. Дерматовенерология 2015: Болезни кожи. Инфекции, передаваемые половым путем. 5-е изд., перераб. и доп. М.: Деловой экспресс, 2016. 768 с. [Dermatovenerologiya: federal'nye klinicheskie rekomendacii. 2015: Bolezni kozhi. Infekcii, peredavaemye polovym putem. 5-е izd., pererab. i dop. Moscow: Delovoj ekspress; 2016.768 p. (In Russ.)]
- Виноградова Ю.Е., Зингерман Б.В. Нозологические формы и выживаемость пациентов с Т- и НК-клеточными лимфатическими опухолями, наблюдающихся в ГНЦ в течение 10 лет // Клиническая онкогематология. 2011. Т. 4. № 3. С. 201–212. [Vinogradova YuE, Zingerman BV. Nosological forms and survival of patients with T- and NK-cell lymphoid neoplasms observed in HSC during 10 years. Clinical Oncohematology. 2011;4(3):201–212. (In Russ.)]
- Jawed SI, Myskowski PL, Horwitz S, et al. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome): part I. Diagnosis: clinical and histopatho logic features and new molecular and bio logic markers. *J Am Acad Dermatol*. 2014;70(2):205.e1–16. doi: https://doi.org/10.1016/j.jaad.2013.07.049
- Moyal L, Feldbaum N, Goldfeiz N, et al. The Therapeutic Potential of AN-7, a Novel Histone Deacetylase Inhibitor, for Treatment of Mycosis Fungoides/Sezary Syndrome Alone or with Doxorubicin. *PLoS One*. 2016:11(1):e0146115. doi: https://doi.org/10.1371/journal.pone.01461151
- Benjamin Chase A, Markel K, Tawa MC. Optimizing care and compliance for the treatment of mycosis fungoides cutaneous T-cell lym-

Annals of the Russian Academy of Medical Sciences. 2023;78(6):530-540.

- phoma with mechlorethamine gel. *Clin J Oncol Nurs*. 2015;19(6):E131–139. doi: https://doi.org/10.1188/15.CJON.E131-E139
- Olisova OY, Grekova EV, Zaletaev DV, et al. Overexpression of STAT4 at early stages of mycosis fungoides: Coincidence or not? *Australas J Dermatol*. 2021;62(1):e119-e120. doi: https://doi.org/10.1111/ajd.13420
- Shen X, Wang B, Li K, et al. MicroRNA Signatures in Diagnosis and Prognosis of Cutaneous T-Cell Lymphoma. *J Invest Dermatol*. 2018;138(9):2024–2032. doi: https://doi.org/10.1016/j.jid.2018.03.1500
- Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. *Nucleic Acids Res.* 2018;39(Database issue):D152–157. doi: https://doi.org/10.1093/nar/gkq1027
- Zackheim HS, McCalmont TH. Mycosis fungoides: the great imitator. J Am Acad Dermatol. 2002;47(6):914–918. doi: https://doi.org/10.1067/mjd.2002.124696
- Peterson SM, Thompson JA, Ufkin ML, et al. Common features of microRNA target prediction tools. Front Genet. 2014;5:23. doi: https://doi.org/10.3389/fgene.2014.00023
- Sadakierska-Chudy A. MicroRNAs: Diverse Mechanisms of Action and Their Potential Applications as Cancer Epi-Therapeutics. *Biomolecules*. 2020;10(9):1285. doi: https://doi.org/10.3390/biom10091285
- Wong HK, Mishra A, Hake T, et al. Evolving insights in the pathogenesis and therapy of cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome). *Br J Haematol.* 2011;155(2):150–166. doi: https://doi.org/10.1111/j.1365-2141.2011.08852.x
- Mardani R, Jafari Najaf Abadi MH, Motieian M, et al. Micro RNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. *J Cell Physiol*. 2019;234(6):8465–8486. doi: https://doi.org/10.1002/jcp.27776

- Chen HN, Liu CM, Yang H, et al. 5-Aminolevulinic acid induces apoptosis via NF-xB/JNK pathway in human oral cancer Ca9-22 cells. *J Oral Pathol Med*. 2011;40(6):483–490. doi: https://doi.org/10.1111/j.1600-0714.2010.00973.x
- Ralfkiaer U, Hagedorn PH, Bangsgaard N, et al. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood. 2011;118(22):5891-5900. doi: https://doi.org/10.1182/blood-2011-06-358382
- Olivo M, Ali-Seyed M. Apoptosis-signalling mechnisms in human cancer cells induced by Calphostin-PDT. *Int J Oncol*. 2007;30(3):537–548.
- Phillips DC, Woollard KJ, Griffiths HR. The anti-inflammatory actions of methotrexate are critically dependent upon the production of reactive oxygen species. *Br J Pharmacol.* 2003;138(3):501–511. doi: https://doi.org/10.1038/si.bip.0705054
- DeSimone JA, Guenova E, Carter JB, et al. Low-dose high-doserate brachytherapy in the treatment of facial lesions of cutaneous T-cell lymphoma. *J Am Acad Dermatol*. 2013;69(1):61–65. doi: https://doi.org/10.1016/j.jaad.2012.12.975
- Garibyan L, Cotter SE, Hansen JL, et al. Palliative treatment for in-transit cutaneous metastases of Merkel cell carcinoma using surface/mold computer-optimized high-dose-rate brachytherapy. Cancer J. 2013;19(4):283–287. doi: https://doi.org/10.1097/PPO.0b013e31829e3566
- 26. Статистический анализ таблиц 2×2 в диагностических исследованиях / авт.-сост. А.В. Тишков и др. СПб.: СПбГМУ, 2013. 17 с. [Statistical Analysis of 2×2 Tables in Diagnostic Studies. Author-comp. A.V. Tishkov et al. St. Petersburg: SPbSMU; 2013. 17 p. (In Russ.)]

КОНТАКТНАЯ ИНФОРМАЦИЯ

Олисова Ольга Юрьевна, д.м.н., профессор, член-корреспондент РАН [*Olga Yu. Olisova*, MD, PhD, Professor, Corresponding Member of the RAS]; **адрес**: 119435, Москва, ул. Б. Пироговская, д. 4 [address: 4 Pirogovskaya str., 119435, Moscow, Russia]; **e-mail**: olisovaolga@mail.ru, **SPIN-ко**д: 2500-7989, **ORCID**: https://orcid.org/0000-0003-2482-1754

Амшинская Джессика Рафаэлевна, аспирант [Jessika R. Amshinskaya, PhD Student]; e-mail: dr.jessika@yandex.ru, SPIN-код: 6770-5019, ORCID: https://orcid.org/0000-0002-3907-2189

Демкин Владимир Витальевич, к.м.н. [Vladimir V. Demkin, MD, PhD]; e-mail: vdemkin@img.ras.ru, SPIN-код: 5130-8270, ORCID: https://orcid.org/0000-0002-3408-6100