The Cell Therapy in Traumatic Spinal Cord Injury

Cover Page


Cite item

Full Text

Abstract

The opportunities and the most promising ways of using cellular technology in traumatic spinal cord injury are considered in this review. A large number of experimental and clinical studies with the use of different types of cells: embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, Schwann cells, olfactory mucosa cells, and others – was conducted. The use of these types of cells in traumatic spinal cord injury treatment often demonstrated a positive therapeutic effect: the motor and sensory function recovery of the spinal cord. However, some types of cell preparations involve some methodological and ethical problems; some types of cell therapies are ineffective or give rise to side effects. These factors complicate the selection of optimal cell therapy for the traumatic spinal cord injury treatment. The most promising cells seem to be the cells of the olfactory mucosa. Getting the olfactory mucosa is considered to be a feasible and safe procedure for patients. The clinical application of the cells of the olfactory mucosa is effective in motor function recovery due to remyelination and axonal regeneration after spinal cord injury. These cells are tissue-specific and autologous since they can be obtained from a patient with spinal cord injury, and after cultivation, expansion, and directed differentiation they can be transplanted to the same patient. The presented benefits of olfactory mucosa cells open up the possibility for its clinical application in the cell therapy. 

About the authors

A. D. Voronova

Pirogov Russian National Research Medical University

Author for correspondence.
Email: nastyanastyav@mail.ru
ORCID iD: 0000-0002-0654-7483

Moscow, Russian Federation

Russian Federation

O. V. Stepanova

The Serbsky State Scientific Center for Social and Forensic Psychiatry

Email: sms-34@yandex.ru
ORCID iD: 0000-0003-4863-0442

Moscow, Russian Federation

A. V. Chadin

The Serbsky State Scientific Center for Social and Forensic Psychiatry

Email: chadin_777@mail.ru
ORCID iD: 0000-0001-9377-6673

Moscow, Russian Federation

I. V. Reshetov

Sechenov First Moscow State Medical University

Email: 2487784@mail.ru
ORCID iD: 0000-0002-0909-6278

Moscow, Russian Federation

V. P. Chekhonin

Pirogov Russian National Research Medical University

The Serbsky State Scientific Center for Social and Forensic Psychiatry

Email: chekhoninnew@yandex.ru
ORCID iD: 0000-0002-5152-6753

Moscow, Russian Federation

References

  1. Yip PK, Malaspina A. Spinal cord trauma and the molecular point of no return. Mol Neurodegener. 2012;7:6. doi: 10.1186/1750-1326-7-6.
  2. Spinal cord injury facts and figures at a glance. J Spinal Cord Med. 2012;35(4):197–198. doi: 10.1179/1079026812Z.00000000063.
  3. van Middendorp JJ, Goss B, Urquhart S, et al. Diagnosis and prognosis of traumatic spinal cord injury. Global Spine J. 2011;1(1):1–8. doi: 10.1055/s-0031-1296049.
  4. Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars). 2011;71(2):281–299.
  5. Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. Biomed Res Int. 2013;2013:786475. doi: 10.1155/2013/786475.
  6. Tello Velasquez J, Ekberg JAK, St John JA. Transplantation of olfactory ensheathing cells in spinal cord injury. In: Zhao LR, Zhang JH, editors. Cellular therapy for stroke and CNS injuries. Springer International Publishing; 2014. p. 277–309. doi: 10.1007/978-3-319-11481-1_13.
  7. Curt A, Dietz V. Ambulatory capacity in spinal cord injury: significance of somatosensory evoked potentials and ASIA protocol in predicting outcome. Arch Phys Med Rehabil. 1997;78(1):39–43. doi: 10.1016/s0003-9993(97)90007-1.
  8. van Middendorp JJ, Hosman AJ, Pouw MH, et al. Is determination between complete and incomplete traumatic spinal cord injury clinically relevant? Validation of the ASIA sacral sparing criteria in a prospective cohort of 432 patients. Spinal Cord. 2009;47(11):809–816. doi: 10.1038/sc.2009.44.
  9. Demaerel P. Magnetic resonance imaging of spinal cord trauma: a pictorial essay. Neuroradiology. 2006;48(4):223–232. doi: 10.1007/s00234-005-0039-y.
  10. ninds.nih.gov [Internet]. National Institute of Neurological Disorders and Stroke (NINDS). Spinal Cord Injury: Hope Through Research [updated 2016 Apr 5; cited 2016 Sep 12]. Available from: http://www.ninds.nih.gov/disorders/sci/detail_sci.htm.
  11. Bozzo A, Marcoux J, Radhakrishna M, et al. The role of magnetic resonance imaging in the management of acute spinal cord injury. J Neurotrauma. 2011;28(8):1401–1411. doi: 10.1089/neu.2009.1236.
  12. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12(1):1–21. doi: 10.1089/neu.1995.12.1.
  13. Park DH, Lee JH, Borlongan CV, et al. Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev. 2011;7(1):181–194. doi: 10.1007/s12015-010-9163-0.
  14. Pearse DD, Bunge MB. Designing cell- and gene-based regeneration strategies to repair the injured spinal cord. J Neurotrauma. 2006;23(3-4):438–452. doi: 10.1089/neu.2006.23.437.
  15. Ray S, Atkuri KR, Deb-Basu D, et al. MYC can induce DNA breaks in vivo and in vitro independent of reactive oxygen species. Cancer Res. 2006;66(13):6598–6605. doi: 10.1158/0008-5472.CAN-05-3115.
  16. Shiras A, Chettiar ST, Shepal V, et al. Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells. 2007;25(6):1478–1489. doi: 10.1634/stemcells.2006-0585.
  17. Маккиарини П., Кондратьева Е. Особенности этической экспертизы при планировании и проведении клинических исследований в регенеративной медицине // Гены и клетки. — 2011. — Т.6. — №4 — С. 111–118. [Makkiarini P, Kondrat’eva E. Osobennosti eticheskoi ekspertizy pri planirovanii i provedenii klinicheskikh issledovanii v regenerativnoi meditsine. Genes and cells. 2011;6(4):111–118. (In Russ).]
  18. Blair K, Wray J, Smith A. The liberation of embryonic stem cells. PLoS Genet. 2011;7(4):e1002019. doi: 10.1371/journal.pgen.1002019.
  19. Puri MC, Nagy A. Concise review: Embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells. 2012;30(1):10–14. doi: 10.1002/stem.788.
  20. Salewski R, Emrani H, Fehlings MG. Neural stem/progenitor cells for spinal cord regeneration [Internet]. In: Wislet-Gendebien S, editor. Trends in cell signaling pathways in neuronal fate decision. InTech; 2013. doi: 10.5772/3445 [cited 2016 Sep 12]. Available from: http://www.intechopen.com/books/trends-in-cell-signaling-pathways-in-neuronal-fate-decision/neural-stem-progenitor-cells-for-spinal-cord-regeneration.
  21. Nishikawa S, Goldstein RA, Nierras CR. The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol. 2008;9(9):725–729. doi: 10.1038/nrm2466.
  22. Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451(7175):141–146. doi: 10.1038/nature06534.
  23. Nori S, Okada Y, Yasuda A, et al. Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci U S A. 2011;108(40):16825–16830. doi: 10.1073/pnas.1108077108.
  24. Fujimoto Y, Abematsu M, Falk A, et al. Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells. Stem Cells. 2012;30(6):1163–1173. doi: 10.1002/stem.1083.
  25. Kobayashi Y, Okada Y, Itakura G, et al. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One. 2012;7(12):e52787. doi: 10.1371/journal.pone.0052787.
  26. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–74. doi: 10.1126/science.276.5309.71.
  27. Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol. 1974;2(2):83–92.
  28. Hsieh JY, Wang HW, Chang SJ, et al. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One. 2013;8(8):e72604. doi: 10.1371/journal.pone.0072604.
  29. Wright KT, El Masri W, Osman A, et al. Concise review: Bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells. 2011;29(2):169-178. doi: 10.1002/stem.570.
  30. Malgieri A, Kantzari E, Patrizi MP, Gambardella S. Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med. 2010;3(4):248–269.
  31. Ichim TE, Solano F, Lara F, et al. Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report. Int Arch Med. 2010;3:30. doi: 10.1186/1755-7682-3-30.
  32. Kishk NA, Gabr H, Hamdy S, et al. Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury. Neurorehabil Neural Repair. 2010;24(8):702–708. doi: 10.1177/1545968310369801.
  33. Bhanot Y, Rao S, Ghosh D, et al. Autologous mesenchymal stem cells in chronic spinal cord injury. Br J Neurosurg. 2011;25(4):516-522. doi: 10.3109/02688697.2010.550658.
  34. Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, et al. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma. 2011;28(8):1611–1682. doi: 10.1089/neu.2009.1177.
  35. Borgmann-Winter K, Willard SL, Sinclair D, et al. Translational potential of olfactory mucosa for the study of neuropsychiatric illness. Transl Psychiatry. 2015;5:e527. doi: 10.1038/tp.2014.141.
  36. Winstead W, Marshall CT, Lu CL, et al. Endoscopic biopsy of human olfactory epithelium as a source of progenitor cells. Am J Rhinol. 2005;19(1):83–90.
  37. Girard SD, Deveze A, Nivet E, et al. Isolating nasal olfactory stem cells from rodents or humans. J Vis Exp. 2011;(54):e2762. doi: 10.3791/2762.
  38. Zhang X, Klueber KM, Guo Z, et al. Adult human olfactory neural progenitors cultured in defined medium. Exp Neurol. 2004;186(2):112–123. doi: 10.1016/j.expneurol.2003.10.022.
  39. Marshall CT, Guo Z, Lu C, et al. Human adult olfactory neuroepithelial derived progenitors retain telomerase activity and lack apoptotic activity. Brain Res. 2005;1045(1-2):45–56. doi: 10.1016/j.brainres.2005.03.041.
  40. Othman M, Lu C, Klueber K, et al. Clonal analysis of adult human olfactory neurosphere forming cells. Biotech Histochem. 2005;80(5-6):189-200. doi: 10.1080/10520290500469777.
  41. Zhang X, Cai J, Klueber KM, et al. Induction of oligodendrocytes from adult human olfactory epithelial-derived progenitors by transcription factors. Stem Cells. 2005;23(3):442–453. doi: 10.1634/stemcells.2004-0274.
  42. Zhang X, Cai J, Klueber KM, et al. Role of transcription factors in motoneuron differentiation of adult human olfactory neuroepithelial-derived progenitors. Stem Cells. 2006;24(2):434–442. doi: 10.1634/stemcells.2005-0171.
  43. Zhang X, Klueber KM, Guo Z, et al. Induction of neuronal differentiation of adult human olfactory neuroepithelial-derived progenitors. Brain Res. 2006;1073–1074:109–119. doi: 10.1016/j.brainres.2005.12.059.
  44. Xiao M, Klueber KM, Lu C, et al. Human adult olfactory neural progenitors rescue axotomized rodent rubrospinal neurons and promote functional recovery. Exp Neurol. 2005;194(1):12–30. doi: 10.1016/j.expneurol.2005.01.021.
  45. Xiao M, Klueber KM, Guo Z, et al. Human adult olfactory neural progenitors promote axotomized rubrospinal tract axonal reinnervation and locomotor recovery. Neurobiol Dis. 2007;26(2):363−374. doi: 10.1016/j.nbd.2007.01.012.
  46. Barnett SC, Riddell JS. Olfactory ensheathing cell transplantation as a strategy for spinal cord repair ― what can it achieve? Nat Clin Pract Neurol. 2007;3(3):152–161. doi: 10.1038/ncpneuro0447.
  47. Mackay-Sim A, St John JA. Olfactory ensheathing cells from the nose: clinical application in human spinal cord injuries. Exp Neurol. 2011;229(1):174−180. doi: 10.1016/j.expneurol.2010.08.025.
  48. Roisen FJ, Klueber KM, Lu CL, et al. Adult human olfactory stem cells. Brain Res. 2001;890(1):11–22. doi: 10.1016/S0006-8993(00)03016-X.
  49. Collazos-Castro JE, Muñetón-Gómez VC, Nieto-Sampedro M. Olfactory glia transplantation into cervical spinal cord contusion injuries. J Neurosurg Spine. 2005;3(4):308−317. doi: 10.3171/spi.2005.3.4.0308.
  50. Tharion G, Indirani K, Durai M, et al. Motor recovery following olfactory ensheathing cell transplantation in rats with spinal cord injury. Neurol India. 2011;59(4):566−572. doi: 10.4103/0028-3886.84339.
  51. Yamamoto M, Raisman G, Li D, Li Y. Transplanted olfactory mucosal cells restore paw reaching function without regeneration of severed corticospinal tract fibres across the lesion. Brain Res. 2009;1303:26−31. doi: 10.1016/j.brainres.2009.09.073.
  52. Richter MW, Fletcher PA, Liu J, et al. Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord. J Neurosci. 2005;25(46):10700−10711. doi: 10.1523/JNEUROSCI.3632-05.2005.
  53. Zhang SX, Huang F, Gates M, Holmberg EG. Scar ablation combined with LP/OEC transplantation promotes anatomical recovery and P0-positive myelination in chronically contused spinal cord of rats. Brain Res. 2011;1399:1−14. doi: 10.1016/j.brainres.2011.05.005.
  54. Novikova LN, Lobov S, Wiberg M, Novikov LN. Efficacy of olfactory ensheathing cells to support regeneration after spinal cord injury is influenced by method of culture preparation. Exp Neurol. 2011;229(1):132−142. doi: 10.1016/j.expneurol.2010.09.021.
  55. Aoki M, Kishima H, Yoshimura K, et al. Limited functional recovery in rats with complete spinal cord injury after transplantation of whole-layer olfactory mucosa: laboratory investigation. J Neurosurg Spine. 2010;12(2):122−130. doi: 10.3171/2009.9.SPINE09233.
  56. Centenaro LA, Jaeger Mda C, Ilha J, et al. Olfactory and respiratory lamina propria transplantation after spinal cord transection in rats: effects on functional recovery and axonal regeneration. Brain Res. 2011;1426:54−72. doi: 10.1016/j.brainres.2011.09.054.
  57. Zhang SX, Huang F, Gates M, et al. Histological repair of damaged spinal cord tissue from chronic contusion injury of rat: a LM observation. Histol Histopathol. 2011;26(1):45−58. doi: 10.14670/HH-26.45.
  58. Toft A, Scott DT, Barnett SC, Riddell JS. Electrophysiological evidence that olfactory cell transplants improve function after spinal cord injury. Brain. 2007;130(Pt 4):970−984. doi: 10.1093/brain/awm040.
  59. Yan H, Bunge MB, Wood PM, Plant GW. Mitogenic response of adult rat olfactory ensheathing glia to four growth factors. Glia. 2001;33(4):334−342. doi: 10.1002/1098-1136(20010315)33:4<334::aid-glia1032>3.0.co;2-i.
  60. Feron F, Perry C, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain. 2005;128(Pt 12):2951−2960. doi: 10.1093/brain/awh657.
  61. Lima C, Pratas-Vital J, Escada P, et al. Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med. 2006;29(3):191−203. doi: 10.1080/10790268.2006.11753874.
  62. Tabakow P, Jarmundowicz W, Czapiga B, et al. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 2013;22(9):1591−1612. doi: 10.3727/096368913X663532.
  63. Mackay-Sim A, Feron F, Cochrane J et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain. 2008;131(Pt 9):2376−2386. doi: 10.1093/brain/awn173.
  64. Huang H, Chen L, Wang H, et al. Influence of patients’ age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J (Engl). 2003;116(10):1488−11491.
  65. Lim PAC, Tow AM. Recovery and regeneration after spinal cord injury: a review and summary of recent literature. Ann Acad Med Singapore. 2007;36(1):49−57.
  66. Chhabra HS, Lima C, Sachdeva S, et al. Autologous olfactory [corrected] mucosal transplant in chronic spinal cord injury: an Indian pilot study. Spinal Cord. 2009;47(12):887−895. doi: 10.1038/sc.2009.54.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies